519 research outputs found

    Reversible cooling-induced deactivations to study cortical contributions to obstacle memory in the walking cat

    Get PDF
    On complex, naturalistic terrain, sensory information about an environmental obstacle can be used to rapidly adjust locomotor movements for avoidance. For example, in the cat, visual information about an impending obstacle can modulate stepping for avoidance. Locomotor adaptation can also occur independent of vision, as sudden tactile inputs to the leg by an expected obstacle can modify the stepping of all four legs for avoidance. Such complex locomotor coordination involves supraspinal structures, such as the parietal cortex. This protocol describes the use of reversible, cooling-induced cortical deactivation to assess parietal cortex contributions to memory-guided obstacle locomotion in the cat. Small cooling loops, known as cryoloops, are specially shaped to deactivate discrete regions of interest to assess their contributions to an overt behavior. Such methods have been used to elucidate the role of parietal area 5 in memory-guided obstacle avoidance in the cat

    Functional imaging reveals rapid reorganization of cortical activity after parietal inactivation in monkeys

    Get PDF
    Impairments of spatial awareness and decision making occur frequently as a consequence of parietal lesions. Here we used event-related functional MRI (fMRI) in monkeys to investigate rapid reorganization of spatial networks during reversible pharmacological inactivation of the lateral intraparietal area (LIP), which plays a role in the selection of eye movement targets. We measured fMRI activity in control and inactivation sessions while monkeys performed memory saccades to either instructed or autonomously chosen spatial locations. Inactivation caused a reduction of contralesional choices. Inactivation effects on fMRI activity were anatomically and functionally specific and mainly consisted of: (i) activity reduction in the upper bank of the superior temporal sulcus (temporal parietal occipital area) for single contralesional targets, especially in the inactivated hemisphere; and (ii) activity increase accompanying contralesional choices between bilateral targets in several frontal and parieto-temporal areas in both hemispheres. There was no overactivation for ipsilesional targets or choices in the intact hemisphere. Task-specific effects of LIP inactivation on blood oxygen level-dependent activity in the temporal parietal occipital area underline the importance of the superior temporal sulcus for spatial processing. Furthermore, our results agree only partially with the influential interhemispheric competition model of spatial neglect and suggest an additional component of interhemispheric cooperation in the compensation of neglect deficits

    Some investigations into non passive listening

    Get PDF
    Our knowledge of the function of the auditory nervous system is based upon a wealth of data obtained, for the most part, in anaesthetised animals. More recently, it has been generally acknowledged that factors such as attention profoundly modulate the activity of sensory systems and this can take place at many levels of processing. Imaging studies, in particular, have revealed the greater activation of auditory areas and areas outside of sensory processing areas when attending to a stimulus. We present here a brief review of the consequences of such non-passive listening and go on to describe some of the experiments we are conducting to investigate them. In imaging studies, using fMRI, we can demonstrate the activation of attention networks that are non-specific to the sensory modality as well as greater and different activation of the areas of the supra-temporal plane that includes primary and secondary auditory areas. The profuse descending connections of the auditory system seem likely to be part of the mechanisms subserving attention to sound. These are generally thought to be largely inactivated by anaesthesia. However, we have been able to demonstrate that even in an anaesthetised preparation, removing the descending control from the cortex leads to quite profound changes in the temporal patterns of activation by sounds in thalamus and inferior colliculus. Some of these effects seem to be specific to the ear of stimulation and affect interaural processing. To bridge these observations we are developing an awake behaving preparation involving freely moving animals in which it will be possible to investigate the effects of consciousness (by contrasting awake and anaesthetized), passive and active listening

    Contributions of parietal cortex to the working memory of an obstacle acquired visually or tactilely in the locomoting cat

    Get PDF
    A working memory of obstacles is essential for navigating complex, cluttered terrain. In quadrupeds, it has been proposed that parietal cortical areas related to movement planning and working memory may be important for guiding the hindlegs over an obstacle previously cleared by the forelegs. To test this hypothesis, parietal areas 5 and 7 were reversibly deactivated in walking cats. The working memory of an obstacle was assessed in both a visually dependent and tactilely dependent paradigm. Reversible bilateral deactivation of area 5, but not area 7, altered hindleg stepping in a manner indicating that the animals did not recall the obstacle over which their forelegs had stepped. Similar deficits were observed when area 5 deactivation was restricted to the delay during which obstacle memory must be maintained. Furthermore, partial memory recovery observed when area 5 function was deactivated and restored within this maintenance period suggests that the deactivation may suppress, but not eliminate, the working memory of an obstacle. As area 5 deactivations incurred similar memory deficits in both visual and tactile obstacle working memory paradigms, parietal area 5 is critical for maintaining the working memory of an obstacle acquired via vision or touch that is used to modify stepping for avoidance

    Effects of core auditory cortex deactivation on neuronal response to simple and complex acoustic signals in the contralateral anterior auditory field

    Get PDF
    Interhemispheric communication has been implicated in various functions of sensory signal processing and perception. Despite ample evidence demonstrating this phenomenon in the visual and somatosensory systems, to date, limited functional assessment of transcallosal transmission during periods of acoustic signal exposure has hindered our understanding of the role of interhemispheric connections between auditory cortical fields. Consequently, the present investigation examines the impact of core auditory cortical field deactivation on response properties of contralateral anterior auditory field (AAF) neurons in the felis catus. Single-unit responses to simple and complex acoustic signals were measured across AAF before, during, and after individual and combined cooling deactivation of contralateral primary auditory cortex (A1) and AAF neurons. Data analyses revealed that on average: 1) interhemispheric projections from core auditory areas to contralateral AAF neurons are predominantly excitatory, 2) changes in response strength vary based on acoustic features, 3) A1 and AAF projections can modulate AAF activity differently, 4) decreases in response strength are not specific to particular cortical laminae, and 5) contralateral inputs modulate AAF neuronal response thresholds. Collectively, these observations demonstrate that A1 and AAF neurons predominantly modulate AAF response properties via excitatory projections

    Specificity of Neuronal Responses in Primary Visual Cortex Is Modulated by Interhemispheric CorticoCortical Input

    Get PDF
    Within the visual cortex, it has been proposed that interhemispheric interactions serve to re-establish the continuity of the visual field across its vertical meridian (VM) by mechanisms similar to those used by intrinsic connections within a hemisphere. However, other specific functions of transcallosal projections have also been proposed, including contributing to disparity tuning and depth perception. Here, we consider whether interhemispheric connections modulate specific response properties, orientation and direction selectivity, of neurons in areas 17 and 18 of the ferret by combining reversible thermal deactivation in one hemisphere with optical imaging of intrinsic signals and single-cell electrophysiology in the other hemisphere. We found interhemispheric influences on both the strength and specificity of the responses to stimulus orientation and direction of motion, predominantly at the VM. However, neurons and domains preferring cardinal contours, in particular vertical contours, seem to receive stronger interhemispheric input than others. This finding is compatible with interhemispheric connections being involved in horizontal disparity tuning. In conclusion, our results support the view that interhemispheric interactions mainly perform integrative functions similar to those of connections intrinsic to one hemisphere
    corecore