1,181 research outputs found
Hyperuniformity on spherical surfaces
In this work we present a study on the characterization of ordered and
disordered hyperuniform point distributions on spherical surfaces. In spite of
the extensive literature on disordered hyperuniform systems in Euclidean
geometries, to date few works have dealt with the problem of hyperuniformity in
curved spaces. As a matter of fact, some systems that display disordered
hyperuniformity, like the space distribution of photoreceptors in avian retina,
actually occur on curved surfaces. Here we will focus on the local particle
number variance and its dependence on the size of the sampling window (which we
take to be a spherical cap) for regular and uniform point distributions, as
well as for equilibrium configurations of fluid particles interacting through
Lennard-Jones, dipole-dipole and charge-charge potentials. We will show how the
scaling of the local number variance enables the characterization of
hyperuniform point patterns also on spherical surfaces
Thermophysical characterization of the deep eutectic solvent choline chloride:ethylene glycol and one of its mixtures with water
The deep eutectic solvent ethaline, containing choline chloride as H-bond acceptor and ethylene glycol as H-bond donor and one of its mixture with water are studied in this work. Ethaline is anhydrous, with a 1:2 mol ratio. Hydrated ethaline, choline chloride:ethylene glycol:water, was studied in a 1:1.98:0.95 mol ratio. Several volumetric, acoustic, optical, thermal, surface, and transport properties were measured and calculated. The working temperature ranges from 278.15 to 338.15 K at pressure = 0.1 MPa. The effects of temperature, water inclusion, and the nature of the donor compound are evaluated. With regard to temperature, the system''s behaviour is as expected: a linear relation for the thermodynamic properties and agreement with the Vogel-Fulcher-Tammann equation for the transport properties. The water molecules hardly modify the ethaline structure. The choline chloride – ethylene glycol interactions are weaker than those for choline chloride - glycerol
The NADES glyceline as a potential Green Solvent: A comprehensive study of its thermophysical properties and effect of water inclusion
In this paper, two Natural Deep Eutectic Solvents, glyceline (Gly) and glyceline-water (GlyW), containing choline chloride as acceptor H-bond compound and glycerol as donor H-bond group are studied. For glyceline the mole relation is 1 (choline chloride): 2 (glycerol) and for glyceline-water the mole relation is 1 (choline chloride): 1.99 (glycerol): 1.02 water. The ternary NADES has been synthetized and characterized chemically by NMR techniques for this work. Several thermophysical properties in a wide range of temperature (278.15–338.15)¿K and at atmospheric pressure (0.1¿MPa) have been measured for both compounds: density, , speed of sound, , refractive index, , surface tension,, isobaric molar heat capacity, , kinematic viscosity, , and electric conductivity,. Furthermore, some related properties have been also calculated: isobaric expansibility, , isentropic compressibility, , molar refraction, , entropy and enthalpy of surface formationper unit surface area ( and ), and dynamic viscosity, , and viscous flow and electrical conductivity activation energies. The results have been discussed in terms of the effect of temperature and the inclusion of water. We conclude that the compound containing water into the structure has a higher molar volume and a higher fluidity. The binary NADES (Gly) is a more structured liquid than ternary one (GlyW)
Effective Magnetic Hamiltonian and Ginzburg Criterion for Fluids
We develop further the approach of Hubbard and Schofield (Phys.Lett., A40
(1972) 245), which maps the fluid Hamiltonian onto a magnetic one. We show that
all coefficients of the resulting effective Landau-Ginzburg-Wilson (LGW)
Hamiltonian may be expressed in terms of the compressibility of a reference
fluid containing only repulsive interactions, and its density derivatives; we
calculate the first few coefficients in the case of the hard-core reference
fluid. From this LGW-Hamiltonian we deduce approximate mean-field relations
between critical parameters and test them on data for Lennard-Jones,
square-well and hard-core-Yukawa fluids. We estimate the Ginzburg criterion for
these fluids.Comment: 4 pages, LaTeX, To appear in Phys.Rev.
Antifungal ativity against Botryosphaeriaceae fungi of the hydro-methanolic extract of Silybum marianum capitula conjugated with stevioside
Silybum marianum (L.) Gaertn, viz. milk thistle, has been the focus of research efforts in the past few years, albeit almost exclusively restricted to the medicinal properties of its fruits (achenes). Given that other milk thistle plant organs and tissues have been scarcely investigated for the presence of bioactive compounds, in this study, we present a phytochemical analysis of the extracts of S. marianum capitula during the flowering phenological stage (stage 67). Gas chromatography–mass spectroscopy results evidenced the presence of high contents of coniferyl alcohol (47.4%), and secondarily of ferulic acid ester, opening a new valorization strategy of this plant based on the former high-added-value component. Moreover, the application of the hydro-methanolic extracts as an antifungal agent has been also explored. Specifically, their activity against three fungal species responsible for the so-called Botryosphaeria dieback of grapevine (Neofusicoccum parvum, Dothiorella viticola and Diplodia seriata) has been assayed both in vitro and in vivo. From the mycelial growth inhibition assays, the best results (EC90 values of 303, 366, and 355 μg·mL−1 for N. parvum, D. viticola, and D. seriata, respectively) were not obtained for the hydroalcoholic extract alone, but after its conjugation with stevioside, which resulted in a strong synergistic behavior. Greenhouse experiments confirmed the efficacy of the conjugated complexes, pointing to the potential of the combination of milk thistle extracts with stevioside as a promising plant protection product in organic Viticulture
On the triplet structure of binary liquids
An approach to calculate the triplet structure of a simple liquid, that was proposed some years ago by Barrat, Hansen, and Pastore Í“Phys. Rev. Lett. 58, 2075 Í‘1987Í’Í” has been tested in the binary case. This approach is based on a factorization ansatz for the triplet direct correlation function c (3) ; the unknown factor function is determined via the sum rule relating c (3) and the pair direct correlation function which is the only input information of the system that is required in this formalism. We present an efficient and stable numerical algorithm which solves the six Í‘partly coupledÍ’ integral equations for the unknown factor functions. Results are given for the case of a binary hard-sphere mixture and complemented by computer simulation data
- …