142 research outputs found

    Triangulation of the map of a GG-manifold to its orbit space

    Full text link
    Let GG be a Lie group and MM a smooth proper GG-manifold. Let pi:MtoM/Gpi:Mto M/G denote the natural map to the orbit space. Then there exist a PL manifold PP, a polyhedron LL and homeomorphisms tau:PtoMtau:Pto M and σ:M/GtoL\sigma:M/Gto L such that \sigma\circpi\circ\tau is PL. If MM and the GG-action are of analytic class, we can choose subanalytic τ\tau and then unique PP and LL

    An inverse function theorem in Fréchet-Spaces

    Get PDF
    AbstractA technical inverse function theorem of Nash-Moser type is proved for maps between Fréchet spaces allowing smoothing operators. A counterexample shows that the growth requirements on the rightinverse of the linearized map needed are minimal

    Sequences of iterates of random-valued vector functions and continuous solutions of related equations

    Get PDF
    Given a probability space (Ω, A, P), a separable metric space X, and a random-valued vector function f : X × Ω → X, we obtain some theorems on the existence and on the uniqueness of continuous solutions φ : X → R of the equation φ(x) = ∫Ω φ(f(x,ω)) P(dω)

    Euler flag enumeration of Whitney stratified spaces

    Get PDF
    The flag vector contains all the face incidence data of a polytope, and in the poset setting, the chain enumerative data. It is a classical result due to Bayer and Klapper that for face lattices of polytopes, and more generally, Eulerian graded posets, the flag vector can be written as a cd-index, a non-commutative polynomial which removes all the linear redundancies among the flag vector entries. This result holds for regular CW complexes. We relax the regularity condition to show the cd-index exists for Whitney stratified manifolds by extending the notion of a graded poset to that of a quasi-graded poset. This is a poset endowed with an order-preserving rank function and a weighted zeta function. This allows us to generalize the classical notion of Eulerianness, and obtain a cd-index in the quasi-graded poset arena. We also extend the semi-suspension operation to that of embedding a complex in the boundary of a higher dimensional ball and study the simplicial shelling components.Comment: 41 pages, 3 figures. Final versio

    The Quantum McKay Correspondence for polyhedral singularities

    Get PDF
    Let G be a polyhedral group, namely a finite subgroup of SO(3). Nakamura's G-Hilbert scheme provides a preferred Calabi-Yau resolution Y of the polyhedral singularity C^3/G. The classical McKay correspondence describes the classical geometry of Y in terms of the representation theory of G. In this paper we describe the quantum geometry of Y in terms of R, an ADE root system associated to G. Namely, we give an explicit formula for the Gromov-Witten partition function of Y as a product over the positive roots of R. In terms of counts of BPS states (Gopakumar-Vafa invariants), our result can be stated as a correspondence: each positive root of R corresponds to one half of a genus zero BPS state. As an application, we use the crepant resolution conjecture to provide a full prediction for the orbifold Gromov-Witten invariants of [C^3/G].Comment: Introduction rewritten. Issue regarding non-uniqueness of conifold resolution clarified. Version to appear in Inventione

    Proof of the Hyperplane Zeros Conjecture of Lagarias and Wang

    Full text link
    We prove that a real analytic subset of a torus group that is contained in its image under an expanding endomorphism is a finite union of translates of closed subgroups. This confirms the hyperplane zeros conjecture of Lagarias and Wang for real analytic varieties. Our proof uses real analytic geometry, topological dynamics and Fourier analysis.Comment: 25 page

    Kato-Nakayama spaces, infinite root stacks, and the profinite homotopy type of log schemes

    Get PDF
    For a log scheme locally of finite type over C, a natural candidate for its profinite homotopy type is the profinite completion of its Kato-Nakayama space. Alternatively, one may consider the profinite homotopy type of the underlying topological stack of its infinite root stack. Finally, for a log scheme not necessarily over C, another natural candidate is the profinite \'etale homotopy type of its infinite root stack. We prove that, for a fine saturated log scheme locally of finite type over C, these three notions agree. In particular, we construct a comparison map from the Kato-Nakayama space to the underlying topological stack of the infinite root stack, and prove that it induces an equivalence on profinite completions. In light of these results, we define the profinite homotopy type of a general fine saturated log scheme as the profinite \'etale homotopy type of its infinite root stack

    Differential Forms on Log Canonical Spaces

    Get PDF
    The present paper is concerned with differential forms on log canonical varieties. It is shown that any p-form defined on the smooth locus of a variety with canonical or klt singularities extends regularly to any resolution of singularities. In fact, a much more general theorem for log canonical pairs is established. The proof relies on vanishing theorems for log canonical varieties and on methods of the minimal model program. In addition, a theory of differential forms on dlt pairs is developed. It is shown that many of the fundamental theorems and techniques known for sheaves of logarithmic differentials on smooth varieties also hold in the dlt setting. Immediate applications include the existence of a pull-back map for reflexive differentials, generalisations of Bogomolov-Sommese type vanishing results, and a positive answer to the Lipman-Zariski conjecture for klt spaces.Comment: 72 pages, 6 figures. A shortened version of this paper has appeared in Publications math\'ematiques de l'IH\'ES. The final publication is available at http://www.springerlink.co
    corecore