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SEQUENCES OF ITERATES OF RANDOM-VALUED

VECTOR FUNCTIONS AND CONTINUOUS SOLUTIONS OF

RELATED EQUATIONS
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Silesian University, Poland

Abstract. Given a probability space (Ω,A, P ), a separable metric
space X, and a random-valued vector function f : X × Ω → X, we ob-
tain some theorems on the existence and on the uniqueness of continuous
solutions ϕ : X → R of the equation ϕ(x) =

∫

Ω ϕ(f(x, ω))P (dω).

1. Introduction

The basic technique for getting a solution of functional equations in a
single variable is iteration. However it may happen that instead of the exact
value of a function at a point we know only some parameters of this value.
The iterates of such functions were defined independently by K. Baron and
M. Kuczma [4] and Ph. Diamond [5]. In [3] and [6, 8] these iterates were
applied (for the first time in [3]) to equations of the form

(1.1) ϕ(x) =

∫

Ω

ϕ
(

f(x, ω)
)

P (dω).

Equation (1.1) appears in many branches of mathematics and its solutions
ϕ are extensively studied (see [2, Part 4] and [1, Part 3]). A very particular
case of (1.1) was studied by W. Sierpiński in [15] (cf. [9, Theorem 11.11]) to
characterize Cantor’s function. A more general equation, but still much less
general then (1.1), was considered by S. Paganoni Marzegalli [14]. J. Morawiec
elaborated on her method in [12] and [13] to the case of (1.1) but on the real
line only. The aim of this paper is to enlarge the procedure of J. Morawiec to
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get the continuity of the solution given via probability distribution of a limit
of the sequence of iterates

(

fn(x, ·)
)

of the given function f in the vector case.

2. Random-valued functions and their iterates

Fix a probability space (Ω,A, P ) and a separable metric space X .
Let B(X) denote the σ-algebra of all Borel subsets of X . We say that
f : X × Ω → X is a random-valued function if it is measurable with respect
to the product σ-algebra B(X) ⊗ A. The iterates of such a function f are
defined by

f1(x, ω1, ω2, . . . ) = f(x, ω1), f
n+1(x, ω1, ω2, . . . ) = f(fn(x, ω1, ω2, . . . ), ωn+1)

for x from X and (ω1, ω2, . . . ) from Ω∞ defined as ΩN. Note that
fn : X × Ω∞ → X is a random-valued function on the product probability
space (Ω∞,A∞, P∞). More exactly, the n-th iterate fn is B(X) ⊗ An-
measurable, where An denotes the σ-algebra of all the sets of the form

{(ω1, ω2, . . . ) ∈ Ω∞ : (ω1, ω2, . . . , ωn) ∈ A}

with A from the product σ-algebra An. (See [4, 7]; also [10, Sec. 1.4]).
Since, in fact, fn(·, ω) depends only on the first n coordinates of ω, instead
of fn(x, ω1, ω2, . . . ) we will write also fn(x, ω1, . . . , ωn).

3. Main results

Being motivated by the paper [3] (especially by [3, Proposition 2.2]) we
will get continuity of the solution of (1.1) given via the probability distribution
of the limit of

(

fn(x, ·)
)

(cf. also [8]). For this purpose we will obtain the
vector counterparts of [12, Proposition 1, Theorem 1] adopting methods of S.
Paganoni Marzegalli and J. Morawiec.

Fix a nonempty set S, and for every s ∈ S fix a nonempty subset Xs of
X and a function us : Xs → R. We are interested in solutions ϕ : X → R of
(1.1) in the class F defined by

F = {ϕ : X → R | ϕ is a bounded function,

ϕ(x) = us(x) for x ∈ Xs and s ∈ S}.

First we prove a theorem on the existence and uniqueness of such solutions
accepting the following assumptions:

(A) For every s ∈ S there exist: an open set Us ⊂ X , an event As ∈ A of
positive probability and a positive integer m such that

(3.1) fm(Us ×AN

s ) ⊂ Xs;

moreover, for some s0 ∈ S the function f(·, ω) is continuous for ω ∈ As0

and there exists an m0 ∈ N such that

(3.2) fm0

(

(X \
⋃

s∈S

Us) ×AN

s0

)

⊂
⋃

s∈S

Us.
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The following theorem is an extension of [12, Proposition 1].

Theorem 3.1. Assume (A). If the closure of X \
⋃

s∈S Xs is compact,
then equation (1.1) has in the class F at most one solution.

Proof. Assume that ϕ1, ϕ2 ∈ F are solutions of (1.1) and put ϕ =
ϕ1 − ϕ2. Clearly ϕ is a solution of (1.1) and

(3.3) ϕ(x) = 0 for x ∈
⋃

s∈S

Xs.

Suppose that

M := sup{|ϕ(x)| : x ∈ X} > 0

and consider the set

Y = {x ∈ X : there exists a sequence (xn) such that

lim
n→∞

xn = x and lim
n→∞

|ϕ(xn)| = M}.

Since M > 0, (3.3) and compactness of cl(X \
⋃

s∈S Xs) show that the set
Y is nonempty. We will prove that Us ∩ Y = ∅ for every s ∈ S. To get this
suppose that x ∈ Us ∩ Y for some s ∈ S. Then

(3.4) lim
n→∞

xn = x and lim
n→∞

|ϕ(xn)| = M

for some sequence (xn) of points of Us. Applying (1.1), (3.1) and (3.3) we see
that

|ϕ(xn)| =
∣

∣

∫

Ω

(

. . .
(

∫

Ω

ϕ(fm(xn, ω1, . . . , ωm))P (dωm)
)

. . .
)

P (dω1)
∣

∣

6

∫

As

(

. . . (

∫

As

|ϕ(fm(xn, ω1, . . . , ωm))|P (dωm)
)

. . .
)

P (dω1)

+MP∞{(ω1, ω2, . . . ) ∈ Ω∞ : (ω1, . . . , ωm) 6∈ Am
s }

= M
(

1 − P (As)
m

)

for every n ∈ N, which is a contradiction. Consequently,

(3.5) Y ⊂ X \
⋃

s∈S

Us.

Now fix an x ∈ Y and an (xn) satisfying (3.4). Applying Fatou’s Lemma
and (1.1) we obtain

0 6

∫

Ω

lim inf
n→∞

(

M −
∣

∣ϕ
(

f(xn, ω)
)
∣

∣

)

P (dω)

6 lim inf
n→∞

∫

Ω

(

M −
∣

∣ϕ
(

f(xn, ω)
)∣

∣

)

P (dω)

6 lim inf
n→∞

(

M − |ϕ(xn)|
)

= 0.
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This gives lim infn→∞

(

M −
∣

∣ϕ
(

f(xn, ω)
)
∣

∣

)

= 0 a.e. In particular,

lim sup
n→∞

∣

∣ϕ
(

f(xn, ω1)
)∣

∣ = M

for some ω1 ∈ As0
. By the continuity of f(·, ω1) we have f(x, ω1) ∈ Y . Re-

placing x by f(x, ω1) we can find ω2 ∈ As0
such that f(f(x, ω1), ω2) ∈ Y ,

i.e. f2(x, ω1, ω2) ∈ Y . After m0 steps we obtain a sequence ω1, . . . , ωm0
of

elements of As0
such that

fm0(x, ω1, . . . , ωm0
) ∈ Y.

On the other hand, on account of (3.5) and (3.2), fm0(x, ω1, . . . , ωm0
) belongs

to
⋃

s∈S Us which is a contradiction.

Now fix a family F0 ⊂ F . We will prove a theorem on the existence and
on the uniqueness of solutions of (1.1) in the class F0 under the following
assumptions:

(B) There exist an m ∈ N and Us ⊂ X , As ∈ A for s ∈ S such that

inf{P (As) : s ∈ S} > 0,

condition (3.1) holds for every s ∈ S, and for some s0 ∈ S we have

(3.6) fm
(

(X \
⋃

s∈S

Us) ×AN

s0

)

⊂
⋃

s∈S

Xs.

(C) For every ϕ ∈ F0 the function ϕ ◦ f(x, ·) is measurable for x ∈ X , and
the function ψ given by

(3.7) ψ(x) =

∫

Ω

ϕ
(

f(x, ω)
)

P (dω)

belongs to F0.

In the proof of the next theorem we will integrate nonnegative functions
possibly nonmeasurable. If A ∈ A and h : A→ [0,∞), then

∫

A

h(ω)P (dω) = sup
Π

∑

E∈Π

P (E) inf h(E)

where the supremum is taken over all partitions Π of A into a countable
number of pairwise disjoint members of A (cf. [11, p. 117]).

Theorem 3.2. Assume (B) and (C). If F0 is nonempty and closed in
uniform convergence, then equation (1.1) has in F0 exactly one solution.

Proof. Consider the operator L : F0 → F0 given by

Lϕ(x) =

∫

Ω

ϕ
(

f(x, ω)
)

P (dω).
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It is enough to prove that Lm : F0 → F0 is a contraction in the supremum
metric τ . To this end we will show (by induction) that for every n ∈ N,
ϕ1, ϕ2 ∈ F0, x ∈ X and A ∈ A the following inequality holds:

|Lnϕ1(x) − Lnϕ2(x)| 6 τ(ϕ1, ϕ2)
(

1 − P (A)n
)

+

∫

A

(

. . .
(

∫

A

∣

∣(ϕ1 − ϕ2)
(

fn(x, ω1, . . . , ωn)
)∣

∣P (dωn)
)

. . .
)

P (dω1).(3.8)

In fact, if ϕ1, ϕ2 ∈ F0, then putting ϕ = ϕ1 − ϕ2, for every x ∈ X and
A ∈ A we have

|Lϕ1(x) − Lϕ2(x)| 6

∫

Ω\A

∣

∣ϕ
(

f(x, ω)
)
∣

∣P (dω) +

∫

A

∣

∣ϕ
(

f(x, ω)
)
∣

∣P (dω)

6 τ(ϕ1, ϕ2)(1 − P (A)) +

∫

A

∣

∣ϕ
(

f(x, ω)
)∣

∣P (dω)

and

|Ln+1ϕ1(x) − Ln+1ϕ2(x)| = |LnLϕ1(x) − LnLϕ2(x)|

6 τ(Lϕ1, Lϕ2)
(

1 − P (A)n
)

+

∫

A

(

. . .
(

∫

A

∣

∣(Lϕ1 − Lϕ2)
(

fn(x, ω1, . . . , ωn)
)∣

∣P (dωn)
)

. . .
)

P (dω1)

6 τ(ϕ1, ϕ2)
(

1 − P (A)n
)

+

∫

A

(

. . .
(

∫

A

{

τ(ϕ1, ϕ2)(1 − P (A))

+

∫

A

∣

∣ϕ
(

f(fn(x, ω1, . . . , ωn), ωn+1)
)∣

∣P (dωn+1)
}

P (dωn)
)

. . .
)

P (dω1)

= τ(ϕ1, ϕ2)
(

1 − P (A)n
)

+ τ(ϕ1, ϕ2)
(

1 − P (A)
)

P (A)n

+

∫

A

(

. . .
(

∫

A

∣

∣ϕ
(

fn+1(x, ω1, . . . , ωn+1)
)
∣

∣P (dωn+1)
)

. . .
)

P (dω1).

Fix ϕ1, ϕ2 ∈ F0 and, using (B), fix also an m ∈ N satisfying (3.1) and
(3.6). If s ∈ S and x ∈ Us, then by (3.8) and (3.1) we have

|Lmϕ1(x) − Lmϕ2(x)| 6 τ(ϕ1, ϕ2)
(

1 − P (As)
m

)

,

whilst if x ∈ X \
⋃

s∈S Us, then (3.8) and (3.6) give

|Lmϕ1(x) − Lmϕ2(x)| 6 τ(ϕ1, ϕ2)
(

1 − P (As0
)m

)

.

By this we obtain

|Lmϕ1(x) − Lmϕ2(x)| 6 τ(ϕ1, ϕ2) sup{1 − P (As)
m : s ∈ S}

for every x ∈ X and, consequently,

τ(Lmϕ1, L
mϕ2) 6 τ(ϕ1, ϕ2) sup{1 − P (As)

m : s ∈ S}.
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Remark 3.3. Under the assumptions of Theorems 3.1 and 3.2 equation
(1.1) has in F exactly one solution and this solution belongs to F0.

Now we proceed to the case where

F0 = {ϕ : X → R | ϕ is a bounded continuous function,

ϕ(x) = 0 for x ∈ X1, ϕ(x) = 1 for x ∈ X2}

for some Borel subsets X1, X2 ⊂ X , assuming the following:

(D) There exist open sets U1, U2 ⊂ X , events A1, A2 of positive proba-
bility, and an m ∈ N such that (3.1) holds for s ∈ {1, 2},

fm
(

(X \ (U1 ∪ U2)) ×AN

1

)

⊂ (X1 ∪X2) ∩ (U1 ∪ U2),

(3.9) f(X1 × Ω) ⊂ X1, f(X2 × Ω) ⊂ X2,

f(·, ω) is continuous for every ω ∈ A1 and f is P -continuous (i.e., if xn → x,
then f(xn, ·) → f(x, ·) in probability).

The main result of this paper, which is a generalization of [3, Proposition
2.2], reads as follows.

Theorem 3.4. Assume (D), dist(X1, X2) > 0 and that cl
(

X \ (X1∪X2)
)

is compact. Then:

(i) Equation (1.1) has exactly one bounded solution ϕ : X → R such
that

(3.10) ϕ(x) = 0 for x ∈ X1, ϕ(x) = 1 for x ∈ X2;

this solution is a continuous function.

(ii) If X is complete and the function π : X × B(X) → [0, 1] given by

(3.11)
π(x,B) = P∞

(

{ω ∈ Ω∞ : the sequence
(

fn(x, ω)
)

converges and its limit belongs to B}
)

satisfies

π(x,X2) = 0 for x ∈ X1, π(x,X2) = 1 for x ∈ X2,

then π(·, X2) is a continuous solution of (1.1).

(iii) If for every x ∈ X the sequence
(

fn(x, ·)
)

converges in probability
to a random variable ξ(x, ·), and the function π : X ×B(X) → [0, 1] given by

(3.12) π(x,B) = P∞(ξ(x, ·) ∈ B)

satisfies

(3.13) π(x,X1) = 1 for x ∈ X1, π(x,X2) = 1 for x ∈ X2,
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then for every bounded and continuous function u : X → R such that

(3.14) u(x) = 0 for x ∈ X1, u(x) = 1 for x ∈ X2,

the function ϕ : X → R defined by

(3.15) ϕ(x) =

∫

X

u(y)π(x, dy) =

∫

Ω∞

u
(

ξ(x, ω)
)

P∞(dω)

is a continuous solution of equation (1.1) and has property (3.10).

Proof. Since clX1 and clX2 are disjoint, the family F0 is nonempty. It
is also closed in the uniform convergence. Fix a ϕ ∈ F0. By the continuity
of ϕ the function ϕ ◦ f(x, ·) is measurable for every x ∈ X . Consider the
function ψ : X → R defined by (3.7). Obviously ψ is a bounded function,
ψ(x) = 0 for x ∈ X1 and ψ(x) = 1 for x ∈ X2. We will prove that ψ is
continuous. If the sequence (xn) of points of X converges to an x, then the
sequence

(

ϕ◦f(xn, ·)
)

of uniformly bounded functions converges in probability
to ϕ ◦ f(x, ·) and on account of the Lebesgue-Vitali Dominated Convergence
Theorem the sequence

(

ψ(xn)
)

converges to ψ(x). This shows (C) with

S = {1, 2}, u1 = 0, u2 = 1.

Clearly, conditions (A) and (B) are fulfilled. Applying Remark 3.3 we get the
first assertion.

To prove the second one it is enough to observe that by [8, Theorem 1]
(for u =1X2

) the function π(·, X2) is a (bounded) solution of (1.1) and to
apply (i).

Passing to a proof of the third assertion fix a u ∈ F0. According to [8,
Theorem 2.(i)] the function ϕ : X → R given by (3.15) is a bounded solution
of (1.1). In view of the first part of Theorem 3.4 it is enough to verify that ϕ
satisfies (3.10). This however follows immediately from (3.13) and (3.14): if
x ∈ X1, then

ϕ(x) =

∫

X1

u(y)π(x, dy) = 0,

and for x ∈ X2 we have

ϕ(x) =

∫

X2

u(y)π(x, dy) = 1.

4. Examples

The following shows a possible application of Theorem 3.4.
Fix an N ∈ N and let X = [0, 1]N .
Denoting the set {1, . . . , N} by I, define the subsets X1, X2 and U1, U2

of X as follows:

X1 = {0}, X2 = {x ∈ X : xn = 1 for some n ∈ I},



396 R. KAPICA

U1 = {x ∈ X : xn < b for n ∈ I}, U2 = {x ∈ X : xn > a for some n ∈ I},

where 0 < b < a < 1 are fixed. Assume that α1, . . . , αN : [0, 1] → [0, 1] are
nondecreasing continuous functions such that
(4.1)
αn(t) = 0 for t ∈ [0, b], αn(1) = 1 and αn(t) < t for t ∈ (0, 1),

and let v1, . . . , vN , w1, . . . , wN : X → [0, 1] be continuous functions. Given
p1 > 0 and p2 > 0 summing up to 1, consider also Ω = {ω1, ω2} and define
the function f : X × Ω → X by

f(x, ωi) = fi(x),

where

f1(x) =
(

α1(v1(x)), . . . , αN (vN (x))
)

, f2(x) =
(

w1(x), . . . , wN (x)
)

.

Since f1, f2 are continuous, it follows that f is random-valued. Equation (1.1)
takes the form

(4.2) ϕ(x) = p1ϕ
(

α1(v1(x)), . . . , αN (vN (x))
)

+ p2ϕ
(

w1(x), . . . , wN (x)
)

.

(I) Assume that

(4.3) v1(x), . . . , vN (x) 6 max{x1, . . . , xN} for x ∈ X \ U2,

(4.4) max{v1(x), . . . , vN (x)} = 1 for x ∈ X2,

(4.5) max{w1(x), . . . , wN (x)} = 1 for x ∈ U2,

(4.6) w1(0) = . . . = wN (0) = 0.

We will show that:

(i) Equation (4.2) has exactly one bounded solution ϕ : X → [0, 1] satisfy-
ing

(4.7) ϕ(0) = 0 and ϕ(x) = 1 for x ∈ X2;

this solution is a continuous function.
(ii) If the function π given by (3.11) fullfils

(4.8) π(x,X2) = 1 for x ∈ X2,

then π(·, X2) is a continuous solution of (4.2).

Proof. First we show that (D) holds. Let A1 = {ω1}, A2 = {ω2}. We
claim that

(4.9) f1(U1) ⊂ X1, f2(U2) ⊂ X2.

If x ∈ U1, then xn < b for n ∈ I and according to (4.3) we have vn(x) < b

for n ∈ I, hence by (4.1) we see that αn(vn(x)) = 0 for n ∈ I, i.e. f1(x) = 0.
If x ∈ U2, then (4.5) gives f2(x) ∈ X2. From this (4.9) follows, and since
X1 ⊂ U1 and X2 ⊂ U2, we have (3.1) for every m ∈ N and s ∈ {1, 2}.
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Similarly we verify that (3.9) holds. The task is now to find a positive integer
m with

fm
1 (x) = 0 for x ∈ X \ U2.

Put α(t) = max{α1(t), . . . , αN (t)} for t ∈ [0, 1]. Clearly, α is a continuous
nondecreasing function,

α(t) = 0 for t ∈ [0, b] and α(t) < t for t ∈ (0, 1).

In particular, limm→∞ αm(a) = 0. Hence αm(a) = 0 for some m ∈ N. Fix an
x ∈ X \ U2. By the monotonicity of α and (4.3) we have

f1(x) 6
(

α(v1(x)), . . . , α(vN (x))
)

6

6
(

α(max{x1, . . . , xN}), . . . , α(max{x1, . . . , xN})
)

,

whence

f1(x) 6
(

α(a), . . . , α(a)
)

6 (a, . . . , a).

In particular, f1(x) ∈ X \ U2 and since x ∈ X \ U2 was arbitrarily fixed we
can replace it by f1(x) to get

f2
1 (x) 6

(

α(max{(f1(x))n : n ∈ I}), . . . , α(max{(f1(x))n : n ∈ I})
)

6
(

α2(max{x1, . . . , xN}), . . . , α2(max{x1, . . . , xN})
)

6
(

α2(a), . . . , α2(a)
)

.

After m steps

fm
1 (x) 6

(

αm(a), . . . , αm(a)
)

and fm
1 (x) = 0. This ends the proof of (D).

Consequently Theorem 3.4(i) yields part (i) of our example.
Since f1(0) = f2(0) = 0, we conclude that for π given by (3.11) we have

π(0, X2) = 0. The continuity of π(·, X2) follows from (4.8) and Theorem
3.4(ii).

Consider now continuous functions β1, . . . , βN : [0, 1] → [0, 1] such that

βn(0) = 0, βn(t) = 1 for t ∈ [a, 1], n ∈ I.

(II) The functions v1, . . . , vN , w1, . . . , wN defined by

vn(x) = max{x1, . . . , xN}, wn(x) = βn(min{x1 + . . .+ xN , 1}) for x ∈ X

satisfy (4.3) - (4.6). By Example (I).(i) the equation

ϕ(x) = p1ϕ
(

α1(max{x1, . . . , xN}), . . . , αN (max{x1, . . . , xN})
)

+ϕ
(

β1(min{x1 + . . .+ xN , 1}), . . . , βN (min{x1 + . . .+ xN , 1})
)

(4.10)

has exactly one bounded solution ϕ : X → R satisfying (4.7) and this solution
is a continuous function. We will show that it equals to

(4.11) x 7→ P∞
(

lim
n→∞

fn(x, ·) = (1, . . . , 1)
)

, x ∈ X.
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In fact, according to [8, Theorem 1 (with u =1{(1,...,1)})] the function (4.11)
is a (bounded) solution of (4.10). If x ∈ X2, then

vn(x) = 1 = min{x1 + . . .+ xN , 1} for n ∈ I,

whence f(x, ωi) = (1, . . . , 1) ∈ X2 for i = 1, 2. Consequently

fn(x, ω) = (1, . . . , 1) for n ∈ N, x ∈ X2 and ω ∈ Ω∞,

and the function (4.11) takes the value 1 on X2. Moreover, f(0, ωi) = 0 for
i = 1, 2, whence fn(0, ω) = 0 for n ∈ N and ω ∈ Ω∞ and, consequently,
π(0, ·) = 0.

(III) Define now the functions v1, . . . , vN , w1, . . . , wN by

vn(x) = xn, wn(x) = βn(xn) for x ∈ X.

Clearly (4.3)–(4.6) are fulfilled. Consequently the equation

(4.12) ϕ(x) = p1ϕ
(

α1(x1), . . . , αN (xN )
)

+ p2ϕ
(

β1(x1), . . . , βN(xN )
)

has exactly one bounded solution ϕ : X → R satisfying (4.7). Assume addi-
tionally (cf. [3, Example 2.1]) that p2 6 b and

αn(t) = 0 for t ∈ [0, a], αn(t) 6
t− p2

p1
for t ∈ [a, 1],

βn(t) = 1 for t ∈ [b, 1], βn(t) 6
t

p2
for t ∈ [0, b],

for n ∈ I. Then

p1αn(t) + p2βn(t) 6 t for t ∈ [0, 1] and n ∈ I,

and

p1f1(x) + p2f2(x) 6 x for x ∈ X.

Due to [7, Theorem 4] for every x ∈ X the sequence
(

fn(x, ·)
)

converges a.s.
to a measurable function ξ(x, ·) : Ω∞ → X . In particular, the functions (3.11)
and (3.12) coincide. Since f1(X2) ⊂ X2, f2(X2) ⊂ X2, we have

fn(x, ω) ∈ X2 for x ∈ X2, ω ∈ Ω∞, n ∈ N.

This gives (4.8), because X2 is closed. Thus π(·, X2) is a continuous solution
of (4.12).
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