SEQUENCES OF ITERATES OF RANDOM-VALUED VECTOR FUNCTIONS AND CONTINUOUS SOLUTIONS OF RELATED EQUATIONS

Rafa乇 Kapica
Silesian University, Poland

Abstract

Given a probability space (Ω, \mathcal{A}, P), a separable metric space X, and a random-valued vector function $f: X \times \Omega \rightarrow X$, we obtain some theorems on the existence and on the uniqueness of continuous solutions $\varphi: X \rightarrow \mathbb{R}$ of the equation $\varphi(x)=\int_{\Omega} \varphi(f(x, \omega)) P(d \omega)$.

1. Introduction

The basic technique for getting a solution of functional equations in a single variable is iteration. However it may happen that instead of the exact value of a function at a point we know only some parameters of this value. The iterates of such functions were defined independently by K. Baron and M. Kuczma [4] and Ph. Diamond [5]. In [3] and [6, 8] these iterates were applied (for the first time in [3]) to equations of the form

$$
\begin{equation*}
\varphi(x)=\int_{\Omega} \varphi(f(x, \omega)) P(d \omega) \tag{1.1}
\end{equation*}
$$

Equation (1.1) appears in many branches of mathematics and its solutions φ are extensively studied (see [2, Part 4] and [1, Part 3]). A very particular case of (1.1) was studied by W. Sierpiński in [15] (cf. [9, Theorem 11.11]) to characterize Cantor's function. A more general equation, but still much less general then (1.1), was considered by S. Paganoni Marzegalli [14]. J. Morawiec elaborated on her method in [12] and [13] to the case of (1.1) but on the real line only. The aim of this paper is to enlarge the procedure of J. Morawiec to

[^0]get the continuity of the solution given via probability distribution of a limit of the sequence of iterates $\left(f^{n}(x, \cdot)\right)$ of the given function f in the vector case.

2. Random-valued functions and their iterates

Fix a probability space (Ω, \mathcal{A}, P) and a separable metric space X. Let $\mathcal{B}(X)$ denote the σ-algebra of all Borel subsets of X. We say that $f: X \times \Omega \rightarrow X$ is a random-valued function if it is measurable with respect to the product σ-algebra $\mathcal{B}(X) \otimes \mathcal{A}$. The iterates of such a function f are defined by
$f^{1}\left(x, \omega_{1}, \omega_{2}, \ldots\right)=f\left(x, \omega_{1}\right), f^{n+1}\left(x, \omega_{1}, \omega_{2}, \ldots\right)=f\left(f^{n}\left(x, \omega_{1}, \omega_{2}, \ldots\right), \omega_{n+1}\right)$ for x from X and $\left(\omega_{1}, \omega_{2}, \ldots\right)$ from Ω^{∞} defined as $\Omega^{\mathbb{N}}$. Note that $f^{n}: X \times \Omega^{\infty} \rightarrow X$ is a random-valued function on the product probability space $\left(\Omega^{\infty}, \mathcal{A}^{\infty}, P^{\infty}\right)$. More exactly, the n-th iterate f^{n} is $\mathcal{B}(X) \otimes \mathcal{A}_{n^{-}}$ measurable, where \mathcal{A}_{n} denotes the σ-algebra of all the sets of the form

$$
\left\{\left(\omega_{1}, \omega_{2}, \ldots\right) \in \Omega^{\infty}:\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right) \in A\right\}
$$

with A from the product σ-algebra \mathcal{A}^{n}. (See $[4,7]$; also [10, Sec. 1.4]). Since, in fact, $f^{n}(\cdot, \omega)$ depends only on the first n coordinates of ω, instead of $f^{n}\left(x, \omega_{1}, \omega_{2}, \ldots\right)$ we will write also $f^{n}\left(x, \omega_{1}, \ldots, \omega_{n}\right)$.

3. Main Results

Being motivated by the paper [3] (especially by [3, Proposition 2.2]) we will get continuity of the solution of (1.1) given via the probability distribution of the limit of $\left(f^{n}(x, \cdot)\right)$ (cf. also [8]). For this purpose we will obtain the vector counterparts of [12, Proposition 1, Theorem 1] adopting methods of S. Paganoni Marzegalli and J. Morawiec.

Fix a nonempty set S, and for every $s \in S$ fix a nonempty subset X_{s} of X and a function $u_{s}: X_{s} \rightarrow \mathbb{R}$. We are interested in solutions $\varphi: X \rightarrow \mathbb{R}$ of (1.1) in the class \mathcal{F} defined by

$$
\begin{aligned}
\mathcal{F}=\{\varphi: X \rightarrow \mathbb{R} \quad \mid & \varphi \text { is a bounded function, } \\
& \left.\varphi(x)=u_{s}(x) \text { for } x \in X_{s} \text { and } s \in S\right\} .
\end{aligned}
$$

First we prove a theorem on the existence and uniqueness of such solutions accepting the following assumptions:
(A) For every $s \in S$ there exist: an open set $U_{s} \subset X$, an event $A_{s} \in \mathcal{A}$ of positive probability and a positive integer m such that

$$
\begin{equation*}
f^{m}\left(U_{s} \times A_{s}^{\mathbb{N}}\right) \subset X_{s} \tag{3.1}
\end{equation*}
$$

moreover, for some $s_{0} \in S$ the function $f(\cdot, \omega)$ is continuous for $\omega \in A_{s_{0}}$ and there exists an $m_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
f^{m_{0}}\left(\left(X \backslash \bigcup_{s \in S} U_{s}\right) \times A_{s_{0}}^{\mathbb{N}}\right) \subset \bigcup_{s \in S} U_{s} \tag{3.2}
\end{equation*}
$$

The following theorem is an extension of [12, Proposition 1].
Theorem 3.1. Assume (A). If the closure of $X \backslash \bigcup_{s \in S} X_{s}$ is compact, then equation (1.1) has in the class \mathcal{F} at most one solution.

Proof. Assume that $\varphi_{1}, \varphi_{2} \in \mathcal{F}$ are solutions of (1.1) and put $\varphi=$ $\varphi_{1}-\varphi_{2}$. Clearly φ is a solution of (1.1) and

$$
\begin{equation*}
\varphi(x)=0 \quad \text { for } x \in \bigcup_{s \in S} X_{s} \tag{3.3}
\end{equation*}
$$

Suppose that

$$
M:=\sup \{|\varphi(x)|: x \in X\}>0
$$

and consider the set
$Y=\left\{x \in X:\right.$ there exists a sequence $\left(x_{n}\right)$ such that

$$
\left.\lim _{n \rightarrow \infty} x_{n}=x \text { and } \lim _{n \rightarrow \infty}\left|\varphi\left(x_{n}\right)\right|=M\right\} .
$$

Since $M>0$, (3.3) and compactness of $\operatorname{cl}\left(X \backslash \bigcup_{s \in S} X_{s}\right)$ show that the set Y is nonempty. We will prove that $U_{s} \cap Y=\emptyset$ for every $s \in S$. To get this suppose that $x \in U_{s} \cap Y$ for some $s \in S$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x_{n}=x \text { and } \lim _{n \rightarrow \infty}\left|\varphi\left(x_{n}\right)\right|=M \tag{3.4}
\end{equation*}
$$

for some sequence $\left(x_{n}\right)$ of points of U_{s}. Applying (1.1), (3.1) and (3.3) we see that

$$
\begin{aligned}
\left|\varphi\left(x_{n}\right)\right|= & \left|\int_{\Omega}\left(\ldots\left(\int_{\Omega} \varphi\left(f^{m}\left(x_{n}, \omega_{1}, \ldots, \omega_{m}\right)\right) P\left(d \omega_{m}\right)\right) \ldots\right) P\left(d \omega_{1}\right)\right| \\
\leqslant & \int_{A_{s}}\left(\ldots\left(\int_{A_{s}}\left|\varphi\left(f^{m}\left(x_{n}, \omega_{1}, \ldots, \omega_{m}\right)\right)\right| P\left(d \omega_{m}\right)\right) \ldots\right) P\left(d \omega_{1}\right) \\
& \quad+M P^{\infty}\left\{\left(\omega_{1}, \omega_{2}, \ldots\right) \in \Omega^{\infty}:\left(\omega_{1}, \ldots, \omega_{m}\right) \notin A_{s}^{m}\right\} \\
= & M\left(1-P\left(A_{s}\right)^{m}\right)
\end{aligned}
$$

for every $n \in \mathbb{N}$, which is a contradiction. Consequently,

$$
\begin{equation*}
Y \subset X \backslash \bigcup_{s \in S} U_{s} \tag{3.5}
\end{equation*}
$$

Now fix an $x \in Y$ and an $\left(x_{n}\right)$ satisfying (3.4). Applying Fatou's Lemma and (1.1) we obtain

$$
\begin{aligned}
0 & \leqslant \int_{\Omega} \liminf _{n \rightarrow \infty}\left(M-\left|\varphi\left(f\left(x_{n}, \omega\right)\right)\right|\right) P(d \omega) \\
& \leqslant \liminf _{n \rightarrow \infty} \int_{\Omega}\left(M-\left|\varphi\left(f\left(x_{n}, \omega\right)\right)\right|\right) P(d \omega) \\
& \leqslant \liminf _{n \rightarrow \infty}\left(M-\left|\varphi\left(x_{n}\right)\right|\right)=0 .
\end{aligned}
$$

This gives $\liminf _{n \rightarrow \infty}\left(M-\left|\varphi\left(f\left(x_{n}, \omega\right)\right)\right|\right)=0$ a.e. In particular,

$$
\limsup _{n \rightarrow \infty}\left|\varphi\left(f\left(x_{n}, \omega_{1}\right)\right)\right|=M
$$

for some $\omega_{1} \in A_{s_{0}}$. By the continuity of $f\left(\cdot, \omega_{1}\right)$ we have $f\left(x, \omega_{1}\right) \in Y$. Replacing x by $f\left(x, \omega_{1}\right)$ we can find $\omega_{2} \in A_{s_{0}}$ such that $f\left(f\left(x, \omega_{1}\right), \omega_{2}\right) \in Y$, i.e. $f^{2}\left(x, \omega_{1}, \omega_{2}\right) \in Y$. After m_{0} steps we obtain a sequence $\omega_{1}, \ldots, \omega_{m_{0}}$ of elements of $A_{s_{0}}$ such that

$$
f^{m_{0}}\left(x, \omega_{1}, \ldots, \omega_{m_{0}}\right) \in Y
$$

On the other hand, on account of (3.5) and (3.2), $f^{m_{0}}\left(x, \omega_{1}, \ldots, \omega_{m_{0}}\right)$ belongs to $\bigcup_{s \in S} U_{s}$ which is a contradiction.

Now fix a family $\mathcal{F}_{0} \subset \mathcal{F}$. We will prove a theorem on the existence and on the uniqueness of solutions of (1.1) in the class \mathcal{F}_{0} under the following assumptions:
(B) There exist an $m \in \mathbb{N}$ and $U_{s} \subset X, A_{s} \in \mathcal{A}$ for $s \in S$ such that

$$
\inf \left\{P\left(A_{s}\right): s \in S\right\}>0
$$

condition (3.1) holds for every $s \in S$, and for some $s_{0} \in S$ we have

$$
\begin{equation*}
f^{m}\left(\left(X \backslash \bigcup_{s \in S} U_{s}\right) \times A_{s_{0}}^{\mathbb{N}}\right) \subset \bigcup_{s \in S} X_{s} \tag{3.6}
\end{equation*}
$$

(C) For every $\varphi \in \mathcal{F}_{0}$ the function $\varphi \circ f(x, \cdot)$ is measurable for $x \in X$, and the function ψ given by

$$
\begin{equation*}
\psi(x)=\int_{\Omega} \varphi(f(x, \omega)) P(d \omega) \tag{3.7}
\end{equation*}
$$

belongs to \mathcal{F}_{0}.
In the proof of the next theorem we will integrate nonnegative functions possibly nonmeasurable. If $A \in \mathcal{A}$ and $h: A \rightarrow[0, \infty)$, then

$$
\int_{A} h(\omega) P(d \omega)=\sup _{\Pi} \sum_{E \in \Pi} P(E) \inf h(E)
$$

where the supremum is taken over all partitions Π of A into a countable number of pairwise disjoint members of \mathcal{A} (cf. [11, p. 117]).

Theorem 3.2. Assume (B) and (C). If \mathcal{F}_{0} is nonempty and closed in uniform convergence, then equation (1.1) has in \mathcal{F}_{0} exactly one solution.

Proof. Consider the operator $L: \mathcal{F}_{0} \rightarrow \mathcal{F}_{0}$ given by

$$
L \varphi(x)=\int_{\Omega} \varphi(f(x, \omega)) P(d \omega)
$$

It is enough to prove that $L^{m}: \mathcal{F}_{0} \rightarrow \mathcal{F}_{0}$ is a contraction in the supremum metric τ. To this end we will show (by induction) that for every $n \in \mathbb{N}$, $\varphi_{1}, \varphi_{2} \in \mathcal{F}_{0}, x \in X$ and $A \in \mathcal{A}$ the following inequality holds:

$$
\left|L^{n} \varphi_{1}(x)-L^{n} \varphi_{2}(x)\right| \leqslant \tau\left(\varphi_{1}, \varphi_{2}\right)\left(1-P(A)^{n}\right)
$$

$$
\begin{equation*}
+\int_{A}\left(\ldots\left(\int_{A}\left|\left(\varphi_{1}-\varphi_{2}\right)\left(f^{n}\left(x, \omega_{1}, \ldots, \omega_{n}\right)\right)\right| P\left(d \omega_{n}\right)\right) \ldots\right) P\left(d \omega_{1}\right) \tag{3.8}
\end{equation*}
$$

In fact, if $\varphi_{1}, \varphi_{2} \in \mathcal{F}_{0}$, then putting $\varphi=\varphi_{1}-\varphi_{2}$, for every $x \in X$ and $A \in \mathcal{A}$ we have

$$
\begin{aligned}
\left|L \varphi_{1}(x)-L \varphi_{2}(x)\right| & \leqslant \int_{\Omega \backslash A}|\varphi(f(x, \omega))| P(d \omega)+\int_{A}|\varphi(f(x, \omega))| P(d \omega) \\
& \leqslant \tau\left(\varphi_{1}, \varphi_{2}\right)(1-P(A))+\int_{A}|\varphi(f(x, \omega))| P(d \omega)
\end{aligned}
$$

and

$$
\begin{aligned}
&\left|L^{n+1} \varphi_{1}(x)-L^{n+1} \varphi_{2}(x)\right|=\left|L^{n} L \varphi_{1}(x)-L^{n} L \varphi_{2}(x)\right| \\
& \leqslant \tau\left(L \varphi_{1}, L \varphi_{2}\right)\left(1-P(A)^{n}\right) \\
&+\int_{A}\left(\ldots\left(\int_{A}\left|\left(L \varphi_{1}-L \varphi_{2}\right)\left(f^{n}\left(x, \omega_{1}, \ldots, \omega_{n}\right)\right)\right| P\left(d \omega_{n}\right)\right) \ldots\right) P\left(d \omega_{1}\right) \\
& \leqslant \tau\left(\varphi_{1}, \varphi_{2}\right)\left(1-P(A)^{n}\right) \\
&+\int_{A}\left(\ldots \left(\int _ { A } \left\{\tau\left(\varphi_{1}, \varphi_{2}\right)(1-P(A))\right.\right.\right. \\
&\left.\left.\left.+\int_{A}\left|\varphi\left(f\left(f^{n}\left(x, \omega_{1}, \ldots, \omega_{n}\right), \omega_{n+1}\right)\right)\right| P\left(d \omega_{n+1}\right)\right\} P\left(d \omega_{n}\right)\right) \ldots\right) P\left(d \omega_{1}\right) \\
&= \tau\left(\varphi_{1}, \varphi_{2}\right)\left(1-P(A)^{n}\right)+\tau\left(\varphi_{1}, \varphi_{2}\right)(1-P(A)) P(A)^{n} \\
&+\int_{A}\left(\ldots\left(\int_{A}\left|\varphi\left(f^{n+1}\left(x, \omega_{1}, \ldots, \omega_{n+1}\right)\right)\right| P\left(d \omega_{n+1}\right)\right) \ldots\right) P\left(d \omega_{1}\right) .
\end{aligned}
$$

Fix $\varphi_{1}, \varphi_{2} \in \mathcal{F}_{0}$ and, using (B), fix also an $m \in \mathbb{N}$ satisfying (3.1) and (3.6). If $s \in S$ and $x \in U_{s}$, then by (3.8) and (3.1) we have

$$
\left|L^{m} \varphi_{1}(x)-L^{m} \varphi_{2}(x)\right| \leqslant \tau\left(\varphi_{1}, \varphi_{2}\right)\left(1-P\left(A_{s}\right)^{m}\right)
$$

whilst if $x \in X \backslash \bigcup_{s \in S} U_{s}$, then (3.8) and (3.6) give

$$
\left|L^{m} \varphi_{1}(x)-L^{m} \varphi_{2}(x)\right| \leqslant \tau\left(\varphi_{1}, \varphi_{2}\right)\left(1-P\left(A_{s_{0}}\right)^{m}\right) .
$$

By this we obtain

$$
\left|L^{m} \varphi_{1}(x)-L^{m} \varphi_{2}(x)\right| \leqslant \tau\left(\varphi_{1}, \varphi_{2}\right) \sup \left\{1-P\left(A_{s}\right)^{m}: s \in S\right\}
$$

for every $x \in X$ and, consequently,

$$
\tau\left(L^{m} \varphi_{1}, L^{m} \varphi_{2}\right) \leqslant \tau\left(\varphi_{1}, \varphi_{2}\right) \sup \left\{1-P\left(A_{s}\right)^{m}: s \in S\right\}
$$

Remark 3.3. Under the assumptions of Theorems 3.1 and 3.2 equation (1.1) has in \mathcal{F} exactly one solution and this solution belongs to \mathcal{F}_{0}.

Now we proceed to the case where $\mathcal{F}_{0}=\{\varphi: X \rightarrow \mathbb{R} \mid \varphi$ is a bounded continuous function,

$$
\left.\varphi(x)=0 \text { for } x \in X_{1}, \varphi(x)=1 \text { for } x \in X_{2}\right\}
$$

for some Borel subsets $X_{1}, X_{2} \subset X$, assuming the following:
(D) There exist open sets $U_{1}, U_{2} \subset X$, events A_{1}, A_{2} of positive probability, and an $m \in \mathbb{N}$ such that (3.1) holds for $s \in\{1,2\}$,

$$
\begin{gather*}
f^{m}\left(\left(X \backslash\left(U_{1} \cup U_{2}\right)\right) \times A_{1}^{\mathbb{N}}\right) \subset\left(X_{1} \cup X_{2}\right) \cap\left(U_{1} \cup U_{2}\right), \\
f\left(X_{1} \times \Omega\right) \subset X_{1}, \quad f\left(X_{2} \times \Omega\right) \subset X_{2}, \tag{3.9}
\end{gather*}
$$

$f(\cdot, \omega)$ is continuous for every $\omega \in A_{1}$ and f is P-continuous (i.e., if $x_{n} \rightarrow x$, then $f\left(x_{n}, \cdot\right) \rightarrow f(x, \cdot)$ in probability).

The main result of this paper, which is a generalization of [3, Proposition 2.2], reads as follows.

Theorem 3.4. Assume (D), $\operatorname{dist}\left(X_{1}, X_{2}\right)>0$ and that $\operatorname{cl}\left(X \backslash\left(X_{1} \cup X_{2}\right)\right)$ is compact. Then:
(i) Equation (1.1) has exactly one bounded solution $\varphi: X \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\varphi(x)=0 \quad \text { for } x \in X_{1}, \quad \varphi(x)=1 \quad \text { for } x \in X_{2} \tag{3.10}
\end{equation*}
$$

this solution is a continuous function.
(ii) If X is complete and the function $\pi: X \times \mathcal{B}(X) \rightarrow[0,1]$ given by

$$
\begin{align*}
\pi(x, B)=P^{\infty}\left(\left\{\omega \in \Omega^{\infty}: \text { the sequence }\left(f^{n}(x, \omega)\right)\right.\right. \\
\text { converges and its limit belongs to } B\}) \tag{3.11}
\end{align*}
$$

satisfies

$$
\pi\left(x, X_{2}\right)=0 \quad \text { for } x \in X_{1}, \quad \pi\left(x, X_{2}\right)=1 \quad \text { for } x \in X_{2}
$$

then $\pi\left(\cdot, X_{2}\right)$ is a continuous solution of (1.1).
(iii) If for every $x \in X$ the sequence $\left(f^{n}(x, \cdot)\right)$ converges in probability to a random variable $\xi(x, \cdot)$, and the function $\pi: X \times \mathcal{B}(X) \rightarrow[0,1]$ given by

$$
\begin{equation*}
\pi(x, B)=P^{\infty}(\xi(x, \cdot) \in B) \tag{3.12}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
\pi\left(x, X_{1}\right)=1 \quad \text { for } x \in X_{1}, \quad \pi\left(x, X_{2}\right)=1 \quad \text { for } x \in X_{2} \tag{3.13}
\end{equation*}
$$

then for every bounded and continuous function $u: X \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
u(x)=0 \quad \text { for } x \in X_{1}, \quad u(x)=1 \quad \text { for } x \in X_{2}, \tag{3.14}
\end{equation*}
$$

the function $\varphi: X \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
\varphi(x)=\int_{X} u(y) \pi(x, d y)=\int_{\Omega^{\infty}} u(\xi(x, \omega)) P^{\infty}(d \omega) \tag{3.15}
\end{equation*}
$$

is a continuous solution of equation (1.1) and has property (3.10).
Proof. Since $\operatorname{cl} X_{1}$ and $\operatorname{cl} X_{2}$ are disjoint, the family \mathcal{F}_{0} is nonempty. It is also closed in the uniform convergence. Fix a $\varphi \in \mathcal{F}_{0}$. By the continuity of φ the function $\varphi \circ f(x, \cdot)$ is measurable for every $x \in X$. Consider the function $\psi: X \rightarrow \mathbb{R}$ defined by (3.7). Obviously ψ is a bounded function, $\psi(x)=0$ for $x \in X_{1}$ and $\psi(x)=1$ for $x \in X_{2}$. We will prove that ψ is continuous. If the sequence $\left(x_{n}\right)$ of points of X converges to an x, then the sequence $\left(\varphi \circ f\left(x_{n}, \cdot\right)\right)$ of uniformly bounded functions converges in probability to $\varphi \circ f(x, \cdot)$ and on account of the Lebesgue-Vitali Dominated Convergence Theorem the sequence $\left(\psi\left(x_{n}\right)\right)$ converges to $\psi(x)$. This shows (C) with

$$
S=\{1,2\}, \quad u_{1}=0, \quad u_{2}=1
$$

Clearly, conditions (A) and (B) are fulfilled. Applying Remark 3.3 we get the first assertion.

To prove the second one it is enough to observe that by [8, Theorem 1] (for $u=\mathbf{1}_{X_{2}}$) the function $\pi\left(\cdot, X_{2}\right)$ is a (bounded) solution of (1.1) and to apply (i).

Passing to a proof of the third assertion fix a $u \in \mathcal{F}_{0}$. According to $[8$, Theorem 2.(i)] the function $\varphi: X \rightarrow \mathbb{R}$ given by (3.15) is a bounded solution of (1.1). In view of the first part of Theorem 3.4 it is enough to verify that φ satisfies (3.10). This however follows immediately from (3.13) and (3.14): if $x \in X_{1}$, then

$$
\varphi(x)=\int_{X_{1}} u(y) \pi(x, d y)=0
$$

and for $x \in X_{2}$ we have

$$
\varphi(x)=\int_{X_{2}} u(y) \pi(x, d y)=1
$$

4. Examples

The following shows a possible application of Theorem 3.4.
Fix an $N \in \mathbb{N}$ and let $X=[0,1]^{N}$.
Denoting the set $\{1, \ldots, N\}$ by I, define the subsets X_{1}, X_{2} and U_{1}, U_{2} of X as follows:

$$
X_{1}=\{0\}, \quad X_{2}=\left\{x \in X: x_{n}=1 \text { for some } n \in I\right\},
$$

$$
U_{1}=\left\{x \in X: x_{n}<b \text { for } n \in I\right\}, \quad U_{2}=\left\{x \in X: x_{n}>a \text { for some } n \in I\right\},
$$ where $0<b<a<1$ are fixed. Assume that $\alpha_{1}, \ldots, \alpha_{N}:[0,1] \rightarrow[0,1]$ are nondecreasing continuous functions such that

$$
\begin{equation*}
\alpha_{n}(t)=0 \quad \text { for } t \in[0, b], \quad \alpha_{n}(1)=1 \quad \text { and } \quad \alpha_{n}(t)<t \quad \text { for } t \in(0,1) \tag{4.1}
\end{equation*}
$$

and let $v_{1}, \ldots, v_{N}, w_{1}, \ldots, w_{N}: X \rightarrow[0,1]$ be continuous functions. Given $p_{1}>0$ and $p_{2}>0$ summing up to 1 , consider also $\Omega=\left\{\omega_{1}, \omega_{2}\right\}$ and define the function $f: X \times \Omega \rightarrow X$ by

$$
f\left(x, \omega_{i}\right)=f_{i}(x)
$$

where

$$
f_{1}(x)=\left(\alpha_{1}\left(v_{1}(x)\right), \ldots, \alpha_{N}\left(v_{N}(x)\right)\right), \quad f_{2}(x)=\left(w_{1}(x), \ldots, w_{N}(x)\right)
$$

Since f_{1}, f_{2} are continuous, it follows that f is random-valued. Equation (1.1) takes the form

$$
\begin{equation*}
\varphi(x)=p_{1} \varphi\left(\alpha_{1}\left(v_{1}(x)\right), \ldots, \alpha_{N}\left(v_{N}(x)\right)\right)+p_{2} \varphi\left(w_{1}(x), \ldots, w_{N}(x)\right) \tag{4.2}
\end{equation*}
$$

(I) Assume that

$$
\begin{gather*}
v_{1}(x), \ldots, v_{N}(x) \leqslant \max \left\{x_{1}, \ldots, x_{N}\right\} \quad \text { for } x \in X \backslash U_{2}, \tag{4.3}\\
\max \left\{v_{1}(x), \ldots, v_{N}(x)\right\}=1 \quad \text { for } x \in X_{2}, \tag{4.4}\\
\max \left\{w_{1}(x), \ldots, w_{N}(x)\right\}=1 \quad \text { for } x \in U_{2} \tag{4.5}\\
w_{1}(0)=\ldots=w_{N}(0)=0 . \tag{4.6}
\end{gather*}
$$

We will show that:
(i) Equation (4.2) has exactly one bounded solution $\varphi: X \rightarrow[0,1]$ satisfying

$$
\begin{equation*}
\varphi(0)=0 \quad \text { and } \quad \varphi(x)=1 \quad \text { for } x \in X_{2} \tag{4.7}
\end{equation*}
$$

this solution is a continuous function.
(ii) If the function π given by (3.11) fullfils

$$
\begin{equation*}
\pi\left(x, X_{2}\right)=1 \quad \text { for } x \in X_{2} \tag{4.8}
\end{equation*}
$$

then $\pi\left(\cdot, X_{2}\right)$ is a continuous solution of (4.2).
Proof. First we show that (D) holds. Let $A_{1}=\left\{\omega_{1}\right\}, A_{2}=\left\{\omega_{2}\right\}$. We claim that

$$
\begin{equation*}
f_{1}\left(U_{1}\right) \subset X_{1}, \quad f_{2}\left(U_{2}\right) \subset X_{2} \tag{4.9}
\end{equation*}
$$

If $x \in U_{1}$, then $x_{n}<b$ for $n \in I$ and according to (4.3) we have $v_{n}(x)<b$ for $n \in I$, hence by (4.1) we see that $\alpha_{n}\left(v_{n}(x)\right)=0$ for $n \in I$, i.e. $f_{1}(x)=0$. If $x \in U_{2}$, then (4.5) gives $f_{2}(x) \in X_{2}$. From this (4.9) follows, and since $X_{1} \subset U_{1}$ and $X_{2} \subset U_{2}$, we have (3.1) for every $m \in \mathbb{N}$ and $s \in\{1,2\}$.

Similarly we verify that (3.9) holds. The task is now to find a positive integer m with

$$
f_{1}^{m}(x)=0 \quad \text { for } x \in X \backslash U_{2} .
$$

Put $\alpha(t)=\max \left\{\alpha_{1}(t), \ldots, \alpha_{N}(t)\right\}$ for $t \in[0,1]$. Clearly, α is a continuous nondecreasing function,

$$
\alpha(t)=0 \quad \text { for } t \in[0, b] \quad \text { and } \quad \alpha(t)<t \quad \text { for } t \in(0,1) .
$$

In particular, $\lim _{m \rightarrow \infty} \alpha^{m}(a)=0$. Hence $\alpha^{m}(a)=0$ for some $m \in \mathbb{N}$. Fix an $x \in X \backslash U_{2}$. By the monotonicity of α and (4.3) we have

$$
\begin{aligned}
f_{1}(x) & \leqslant\left(\alpha\left(v_{1}(x)\right), \ldots, \alpha\left(v_{N}(x)\right)\right) \leqslant \\
& \leqslant\left(\alpha\left(\max \left\{x_{1}, \ldots, x_{N}\right\}\right), \ldots, \alpha\left(\max \left\{x_{1}, \ldots, x_{N}\right\}\right)\right),
\end{aligned}
$$

whence

$$
f_{1}(x) \leqslant(\alpha(a), \ldots, \alpha(a)) \leqslant(a, \ldots, a) .
$$

In particular, $f_{1}(x) \in X \backslash U_{2}$ and since $x \in X \backslash U_{2}$ was arbitrarily fixed we can replace it by $f_{1}(x)$ to get

$$
\begin{aligned}
f_{1}^{2}(x) & \leqslant\left(\alpha\left(\max \left\{\left(f_{1}(x)\right)_{n}: n \in I\right\}\right), \ldots, \alpha\left(\max \left\{\left(f_{1}(x)\right)_{n}: n \in I\right\}\right)\right) \\
& \leqslant\left(\alpha^{2}\left(\max \left\{x_{1}, \ldots, x_{N}\right\}\right), \ldots, \alpha^{2}\left(\max \left\{x_{1}, \ldots, x_{N}\right\}\right)\right) \\
& \leqslant\left(\alpha^{2}(a), \ldots, \alpha^{2}(a)\right) .
\end{aligned}
$$

After m steps

$$
f_{1}^{m}(x) \leqslant\left(\alpha^{m}(a), \ldots, \alpha^{m}(a)\right)
$$

and $f_{1}^{m}(x)=0$. This ends the proof of (D).
Consequently Theorem 3.4(i) yields part (i) of our example.
Since $f_{1}(0)=f_{2}(0)=0$, we conclude that for π given by (3.11) we have $\pi\left(0, X_{2}\right)=0$. The continuity of $\pi\left(\cdot, X_{2}\right)$ follows from (4.8) and Theorem 3.4(ii).

Consider now continuous functions $\beta_{1}, \ldots, \beta_{N}:[0,1] \rightarrow[0,1]$ such that

$$
\beta_{n}(0)=0, \quad \beta_{n}(t)=1 \quad \text { for } t \in[a, 1], n \in I
$$

(II) The functions $v_{1}, \ldots, v_{N}, w_{1}, \ldots, w_{N}$ defined by
$v_{n}(x)=\max \left\{x_{1}, \ldots, x_{N}\right\}, \quad w_{n}(x)=\beta_{n}\left(\min \left\{x_{1}+\ldots+x_{N}, 1\right\}\right) \quad$ for $x \in X$
satisfy (4.3) - (4.6). By Example (I).(i) the equation

$$
\begin{align*}
\varphi(x)= & p_{1} \varphi\left(\alpha_{1}\left(\max \left\{x_{1}, \ldots, x_{N}\right\}\right), \ldots, \alpha_{N}\left(\max \left\{x_{1}, \ldots, x_{N}\right\}\right)\right) \\
& +\varphi\left(\beta_{1}\left(\min \left\{x_{1}+\ldots+x_{N}, 1\right\}\right), \ldots, \beta_{N}\left(\min \left\{x_{1}+\ldots+x_{N}, 1\right\}\right)\right) \tag{4.10}
\end{align*}
$$

has exactly one bounded solution $\varphi: X \rightarrow \mathbb{R}$ satisfying (4.7) and this solution is a continuous function. We will show that it equals to

$$
\begin{equation*}
x \mapsto P^{\infty}\left(\lim _{n \rightarrow \infty} f^{n}(x, \cdot)=(1, \ldots, 1)\right), \quad x \in X \tag{4.11}
\end{equation*}
$$

In fact, according to $\left[8\right.$, Theorem 1 (with $\left.\left.u=\mathbf{1}_{\{(1, \ldots, 1)\}}\right)\right]$ the function (4.11) is a (bounded) solution of (4.10). If $x \in X_{2}$, then

$$
v_{n}(x)=1=\min \left\{x_{1}+\ldots+x_{N}, 1\right\} \quad \text { for } n \in I
$$

whence $f\left(x, \omega_{i}\right)=(1, \ldots, 1) \in X_{2}$ for $i=1,2$. Consequently

$$
f^{n}(x, \omega)=(1, \ldots, 1) \quad \text { for } n \in \mathbb{N}, x \in X_{2} \text { and } \omega \in \Omega^{\infty}
$$

and the function (4.11) takes the value 1 on X_{2}. Moreover, $f\left(0, \omega_{i}\right)=0$ for $i=1,2$, whence $f^{n}(0, \omega)=0$ for $n \in \mathbb{N}$ and $\omega \in \Omega^{\infty}$ and, consequently, $\pi(0, \cdot)=0$.
(III) Define now the functions $v_{1}, \ldots, v_{N}, w_{1}, \ldots, w_{N}$ by

$$
v_{n}(x)=x_{n}, \quad w_{n}(x)=\beta_{n}\left(x_{n}\right) \quad \text { for } x \in X .
$$

Clearly (4.3)-(4.6) are fulfilled. Consequently the equation

$$
\begin{equation*}
\varphi(x)=p_{1} \varphi\left(\alpha_{1}\left(x_{1}\right), \ldots, \alpha_{N}\left(x_{N}\right)\right)+p_{2} \varphi\left(\beta_{1}\left(x_{1}\right), \ldots, \beta_{N}\left(x_{N}\right)\right) \tag{4.12}
\end{equation*}
$$

has exactly one bounded solution $\varphi: X \rightarrow \mathbb{R}$ satisfying (4.7). Assume additionally (cf. [3, Example 2.1]) that $p_{2} \leqslant b$ and

$$
\begin{gathered}
\alpha_{n}(t)=0 \quad \text { for } t \in[0, a], \quad \alpha_{n}(t) \leqslant \frac{t-p_{2}}{p_{1}} \quad \text { for } t \in[a, 1], \\
\beta_{n}(t)=1 \quad \text { for } t \in[b, 1], \quad \beta_{n}(t) \leqslant \frac{t}{p_{2}} \quad \text { for } t \in[0, b]
\end{gathered}
$$

for $n \in I$. Then

$$
p_{1} \alpha_{n}(t)+p_{2} \beta_{n}(t) \leqslant t \quad \text { for } t \in[0,1] \text { and } n \in I
$$

and

$$
p_{1} f_{1}(x)+p_{2} f_{2}(x) \leqslant x \quad \text { for } x \in X
$$

Due to [7, Theorem 4] for every $x \in X$ the sequence $\left(f^{n}(x, \cdot)\right)$ converges a.s. to a measurable function $\xi(x, \cdot): \Omega^{\infty} \rightarrow X$. In particular, the functions (3.11) and (3.12) coincide. Since $f_{1}\left(X_{2}\right) \subset X_{2}, f_{2}\left(X_{2}\right) \subset X_{2}$, we have

$$
f^{n}(x, \omega) \in X_{2} \quad \text { for } x \in X_{2}, \omega \in \Omega^{\infty}, n \in \mathbb{N}
$$

This gives (4.8), because X_{2} is closed. Thus $\pi\left(\cdot, X_{2}\right)$ is a continuous solution of (4.12).

Acknowledgements.

The research was supported by the Silesian University Mathematics Department (Iterative Functional Equations and Real Analysis program).

References

[1] K. Baron, Recent results in the theory of functional equations in a single variable, Seminar LV 15 (2003), 16 pp.
[2] K. Baron, W. Jarczyk, Recent results on functional equations in a single variable, perspectives and open problems, Aequationes Math. 61 (2001), 1-48.
[3] K. Baron, W. Jarczyk, Random-valued functions and iterative functional equations, Aequationes Math. 67 (2004), 140-153.
[4] K. Baron, M. Kuczma, Iteration of random-valued functions on the unit interval, Colloq. Math. 37 (1977), 263-269.
[5] Ph. Diamond, A stochastic functional equation, Aequationes Math. 15 (1977), 225233.
[6] R. Kapica, Sequences of iterates of random-valued vector functions and continuous solutions of a linear functional equation of infinite order, Bull. Polish Acad. Sci. Math. 50 (2002), 447-455.
[7] R. Kapica, Convergence of sequences of iterates of random-valued vector functions, Colloq. Math. 97 (2003), 1-6.
[8] R. Kapica, Sequences of iterates of random-valued vector functions and solutions of related equations, Sitzungsber. Abt. II 213 (2004), 113-118.
[9] M. Kuczma, Functional equations in a single variable, Państwowe Wydawnictwo Naukowe, Warszawa, 1968.
[10] M. Kuczma, B. Choczewski, R. Ger, Iterative functional equations, Cambridge University Press, Cambridge, 1990.
[11] S. Łojasiewicz, An introduction to the theory of real functions, John Wiley and Sons, New York 1988.
[12] J. Morawiec, On a linear functional equation, Bull. Polish Acad. Sci. Math. 43 (1995), 131-142.
[13] J. Morawiec, Some properties of probability distribution solutions of linear functional equations, Aequationes Math. 56 (1998), 81-90.
[14] S. Paganoni Marzegalli, One-parameter system of functional equations, Aequationes Math. 47 (1994), 50-59.
[15] W. Sierpiński, Sur un système d'equations fonctionnelles, définissant une fonction avec un ensemble dense d'intervalles d'invariabilité, Bull. Intern. Acad. Sci. Cracovie A (1911), 577-582.

R. Kapica

Institute of Mathematics
Silesian University
Bankowa 14
PL-40-007 Katowice
Poland
E-mail: rkapica@ux2.math.us.edu.pl
Received: 2.1.2006.
Revised: 4.7.2006.

[^0]: 2000 Mathematics Subject Classification. 39B12, 39B52, 60B12.
 Key words and phrases. Random-valued vector functions, sequences of iterates, iterative functional equations, continuous solutions.

