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A technical inverse function theorem of Nash-Moser type is proved for 
maps between Frkhet spaces allowing smoothing operators. A counterexample 
shows that the growth requirements on the rightinverse of the linearized map 
needed are minimal. 

1. SETUP AND RESULT 

It is our aim to prove a technical inverse function theorem for maps between 
‘Frechet-spaces under minimal growth requirements on the rightinverse of the 
linearized map. 

We consider a continuous map $: E + F between two Frechet-spaces E 
and F, satisfying 

4(O) = 0. 

We are looking for conditions on +, which guarantee a local inverse map 4, 
satisfying 4 0 ~,4 = id in an open neighborhood V of 0 E F. If E and F are Banach 
spaces and if 4 is of class Cl, then $ is a local Cr-diffeomorphism in some neigh- 
borhood of 0, provided 4’(O) is an isomorphism of E onto F. In contrast-the 
situation in FrCchet-spaces is quite different. Take for example +: f -+ exp( f) 
from C-(R) into itself, or from the FrCchet-space of entire functions into 
&self. This map is smooth and injective, its derivative at every point is an 
isomorphism of the FrCchet-space, but the range of 4 is clearly nowhere dense, 
hence there is no inverse map on an open set. Therefore in order to find an 
inverse one has to require additional conditions on E and +. We formulate 
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next some smoothness and growth conditions on rj and the inverse of the 
linearized map, which allow a local inverse of #J and which are, as it turns out, 
in a certain sense minimal, 

Let E be a Frechet-space with an increasing family of norms defining its 
topology 

if n < m. We assume that E admits smoothing operators S, , 0 > 1, that is 
a one-parameter family of linear maps S,: E + E, such that the following 
estimates hold: 

I(1 - S,)(X)ll, < CB-(n-k) 1 X jR 
(2) 

for x E E, 0 2 1 and 0 < k < n. The constant C > 0 may depend on k and 
n. In all the following estimates we let C denote various constants which may 
always depend on the various norms ( In involved. These quantitative estimates 
(2), which are crucial for our purpose, single out a restricted class of norms 
among the increasing families of norms (1) defining the same topology of E. 
In view of (2) we also have the convexity estimates at our disposal: 

I x II < c I x I? I x I”, , 1 = (1 - a)k + an, (3) 

x E E, 0 < k f n and 0 < a < 1. For example, the Frkchet-space P(M), 
M a compact manifold, is such a graded FrCchet-space allowing smoothing 
operators, the norms being the Ck-norms, or the Holder-norms or the Sobolev- 
norms. Another example is provided by the Frtchet-space of entire functions 
dealed with later on. 

Let $: E -+ F be a continuous map between two such graded Frechet-spaces, 
locally defined in a neighborhood of’ 0, assume +(O) = 0. The growth and 
smoothness conditions on +, formulated next, will be valid on the following 
open neighborhood U C E of 0, U = {x E E 1 1 x It < l}, for some fixed 1 > 0. 
Keeping in mind, that $(O) = 0, we require 

l9wl7l G c I * In+dl (4) 

for x E U and all n >/ 0 with some fixed dl > 0. Every smooth nonlinear 
partial differential operator on Cm(M) for instance satisfies these growth con- 
ditions, 1 = dl is in this case the order of derivatives involved. We also assume 
4: (UC E) -+ F to be differentiable in the sense that in F the following limit 
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exists for all x E U and v E. E. This derivative, +‘: (U C E) x E -+ F is required 
to satisfy: 

/4’@+ IR d C(l * In+6 I v IB -t I v L+dJ 

for some fixed dz 2 0 and for all (x, v) E U x E and all n 3 0. Again, smooth 
nonlinear partial differential operators on C-(&Z) for instance meet these con- 
ditions (5) as well as the conditions (8) below. By the way, if#‘: (UC E) x E-+F 
is continuous, then (4) is a consequence of (5) by means of the Taylorformula. 
We shall assume, that the map +‘(x): E --+ F, x E U, possesses a rightinverse 
in the following sense. There is a map L: (U C E) x F -+ E satisfying 

+‘(x)-wY = Y> (X,Y)E U xF (6) 

and the growth conditions 

I -WY In d C(l x I h+d I Y id -t i Y l~+d), (7) 

for all (x,~)E(UCE)XF, all n>O with some da0 and some h;: 1. 
Of course, if the norms 1 1% are labelled by integers, n E N, then An is always 
understood to be the integer [hn], where for a E Iw, [a] stands for the integer 
[a] -< a < [a] + 1. We point out that, in contrast to the usual growth condi- 
tions on L, we allow h > 1. In this case the norms on the right hand side of (7) 
blow up with increasing n by a factor X. This means the loss of derivatives 
in solving the linearized problem (6) increases with n. Finally, for the remainder 
&x; V) :== +(x + v) - +(x) - $(x)v, we require 

It is well known, that in the special case h =: 1, the above assumptions 
(4)(S) on 4 guarantee a local rightinverse #: (I/ CF) -+ UC E satisfying 
+Mr)) = Y. Th e map 4 even belongs to the same category as 4, namely it 
satisfies the growth estimates (4) with a different da however, depending on d 
in (7), see [3]. Indeed many such inverse function theorems of Moser-Nash 
type, designed for quite different purposes are available nowadays if h = 1, 
see for instance [2]-[7]. We shall prove the inverse function theorem for the 
more general case h > 1. The proof illustrates the power of the Newton 
a&&thm, introduced in this context by J. Moser [2]. We should mention 
that the proof requires merely some mild modifications of the crude standard 
techniques for which we refer in particular to the paper by R. Hamilton [3]. 

TEEOREM. Assume #: (UC E) -+ F, q5(0) = 0, satisfies the growth and 
smmkess ussumptiom (4)-(8) with 1 < X < 2. Then. there are constants s,, , 
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S und C > 0, where so = 0,((2 - A))“) und there is a map #: (VCF) -+ U, 
which is deJned in the open neighborhood V : = {y E F ( [ y j s0 < S> and which 
sutis$es #(O) = 0, 

MY)) = YY Y E v (9) 

and the estimate 1 #(y)jl ,< C jy Iso. 
Moreover, if y(x): E -+ F, x E- U, is a bijection (that is g L(x) +‘(x)w = o, 

(x, v) E U x E), then the inverse mup #: V --t U is unique and it is u continuous 
nra.p. If in addition $” exists in U, and if $“: U x E x E --+ F is continuous, 
then # is differentiable on V and +‘(y)w = L($(y))w for all ( y, w) E V x F. 
In particular, $‘: V x F -+ E is continuous, if L: U x F -+ E is continuous. 

The above existence statement, and this is our main point, is optimal in the 
sense, that it does not hold true anymore for h > 2. A counterexample for 
X = 2 is described below. 

Remarks. (a) The above inverse map $J does in general not allow estimates 
like (4) anymore, if h > 1. 

(b) The existence statement can be refined as follows. Replace the 
estimates (4), (5) and (8) by th e weaker growth conditions admitting on the 
right hand side instead of the n-norms the p . n-norms for some ~1 > 1. For 
instance replace (4) by 

Then the proof below still establishes a rightinverse as long as h * p < 2. 
If however one knows in addition, that 1 L(x) $(x)1% < C 1 x lAnfd , then h < 2 
is the only restriction. Observe that in view of (3) the estimates 1 #J(x)\~ < 
C(( x In+Q lead to (10). 

(c) The restriction h < 2 of the statement is related to the Newton 
iteration method, whose formally quadratic convergence enters crucially the 
construction of *. 

2. PROOF OF THE THEOREM 

To simplify the notation we may assume 

d, = d, = 0 and 1 = d, (11) 

by relabeling the norms and increasing the value of d > 0 in (7). Recall, the 
Z-norm describes the neighborhood U := (x E E 1 1 x IL < 1) C E in which the 
estimates are valid. We now write down the modified Newton algorithm for the 
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sequence x, E E, p > 0, which as we shall demonstrate will converge to a 
solution x of (b(x) = y for small enough y EF. (Recall 4(O) = 0). Starting 
with x0 -= 0, we put for p 3 0 

xy.il = xy + Ax, 

Ax,, := S,PL(x,) z, , z, = Y - WJ 

The sequence 8, in the smoothing operators are defined by 6, := 2@‘), with 
1 < A < r < 2. We have used the assumption A < 2. We fix r :== 2-r@ + 2) 
and observe 

e Ptl = e,T. (13) 

We next establish bounds for the norms / x, jlz , n > 0, which will be valid as 
longasjx,/,<landjyI,<l. 

LEMMA 1. For every n 2 d, there exists a constant K, K = K, , such that 
forallyEEwith JyJd < 1, wehave 

I xp, In G Kc?’ I Y 112 (14) 

forallp>O,aslongas)x,),<l. 

L(n):=nf(&j-)+lo, with 1 =f$?$. 0 

Proof. Let n 2 d and assume 1 y Id < 1 and i xj jd < 1, j = 1,2 ,..., p. 
By (4) and (11) we can estimate 2, = y - #(xi) as follows: 1 xj In ,( / y In + 
I ~(xj)ln G WY In + i xj in>. As long as I y Id < 1 and I xj Id < 1, we have 
1 aj Id < C. Define K (depending on n) by 

n = A(n - h) + d. 

Respectively k := n - [(n - d)/h] in case the norms are labelled by integers. 
We estimate xj := S,L(q) zi by means of (2) and (7): 

where C > 1 is a constant independent of j. Repeated use of these estimates 
yields, with Sj = 2trf), 

j xp+l In < (p + 1) Cp+12k(7D+‘--1)‘(+--l) 1 y lr, . 
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But by definition (T - l)L(n) > K, hence there is a constant K > 0 such that 

(p + 1) (3qkP+~l(4 < ~pwfl= K@fi) 

for all p 3 0. Therefore 1 xBtl /12 < 20;:“: 1 y In as we wanted to prove. 1 

Now the low norms are estimated carefully, in order to prove that for y E F 
sufficiently small, the sequence 1 zp Id converges to zero: 

LEMMA 2. There exist M, s, , 
we have 

8 >0, such that ifyEFsutisfies Iy\, <8 

I x1, Id G J,KT I Y Iso 9 
2+7 

- EL:= 2-Td (15) 

for all p >, 0 as long as ( x1, Id < 1. We find s0 = 0,((2 - h)-l). 

Proof. Induction in p. By definition x9+r = xP + Ax,, hence +(xP+r) = 
+(x0) + +‘(x,) Ax, + A(x, , Ax,) and with (6) and (12) we find xD+r = 
y - $(x~+~) = #(x,)(1 - S,g)L(x,) z, - R(x, , Ax,). We estimate the first 
term, using (5) with d2 = 0, 1 x, Id < 1, using (2) and (7) and abbreviating 
SO := As + d: 

< ce,‘“-d’ 1 L(x,) 2, I8 

Since ) xp Id < 1 and ) y Id < 1, we have 1 xp Id < C, from (4) we conclude 
I z, Iso G I Y Iso + c I %J Iso * 
estimate further 

Hence applying Lemma 1 to 1 x9 IS0 , we can 

<Ce,‘“-d’(e,L’“’ + 1) 1 y ISO . 

By definition of L(s,), so = As + d, we have s-d--L(s,) = s(l -(A- l)/(~-- I))- 
d(h - l)/h(~ - 1) - Z,, - d. Because of h < T we therefore can pick s > 0 such 
that 

s - d - L(s,,) > PT. 

Recalling T = 23X + 2) we find so = O,((Z - A)-I). Clearly (s - d) > pi, 
hence 

I d’hJ(l - &Jp) -%J z, Id < CGl I y Iso , 
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the constant C being independent of p. In order to estimate the second term 
of ZVfl 9 we use I & Id = I SO WV) 2, Id < Cevd I+,) z, lo Q Cevd I z, Id 
which follows by (2) and (7) wi:h j xP jd < 1. Therefore in view of (8) with 
d, = 0, we get 

We finally use the induction hypotheses, I zI, Id < 44~9;~ / y jsO, and B$%;a~ < 
r9;$ (by definition of p) to conclude 1 R(x, ; dx,)i, < CM??& j y Ii,. Sum- 

marizing we have shown so far, that 

for some C independent of p. We may assume M > C, with C as in the previous 
estimate. Define S : = min(1, (A4 - C) C-i&Pa}. Therefore, if we restrict 
I Y I so < 6, we find I z,+~ Id ,< Jff%$ I Y Iso which completes the induction. 1 

From Lemma 2 we deduce inductively for the sequence x, E E, p > 0, that 
x, id < 1, if / y Is0 < 6 for 6 sufficiently small. Indeed, if j xj Id < 1 for 

0 <j <p, we know / Axj Id < Cejd 1 zj Id, so by Lemma 2, 1 Axj Id z.; 
Cf3;(i’-d) j y Iso for some C independent ofj. Therefore / xp+i Id < XT=,, / Ax, jd 6; 
c(c,“_, ep-d)) 1 y iso . But p > d, and so we get 

I xv+1 Id d c I Y Iso < cs -c 1, (16) 

choosing S smaller, if necessary. Hence (16) holds true for all p 3 0. In the 
foIlowing we shall always assume 1 y Is0 < 8 with this particular choice of 6. 
Lemma 1 and Lemma 2 are then valid for all p > 0. 

The trick now is to improve the estimate (15) to any power of eQ at the cost 
of course of arbitrary high norms of y. 

LEMMA 3. For every a > 0 there are constants C = C(a) > 0 and n(a) > 0 
such that 

I zv ld G c IY h) 0;” (17) 

for all p 3 0 and ally E E with ) y IS0 -==I 8. 

Proof. The statement is obviously true for 0 < a & p (Lemma 2). Let 
a 3 TV and assume the statement to hold true for this a, we shall prove it for 
a -t d. We know 
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Proceeding as in Lemma 2 we pick tit,, n, = An + d with n - a’ - L&J 2 
~(a + d), such that 

On the other hand, ] R(x, , &,)I, < C 1 dx, 1: < C0: 1 I, 1: can be estimated 
by the induction assumption: 

By the convexity estimate (3) and using [ y I0 < 1, we estimate 1 y I&r < 
C 1 y )2n(o) . Also, 2u - 2d > ~(a + d), if a >, (2 - T)“(T + 2)d, hence in 
particular if a > p by our choice of F. Therefore I R(x, , Ax,)ld < 
C 1 y )snfa) 6pycd’. We proved, ) x9+1 Id Q C 1 y In(a+d) 8;$‘d’ for allp > 0, with 
*(a + 4 := m={no, 244). TriviW I 2, Id < I Y Id f C I y Lc~+~) G@+d), by 
changing the constant if necessary. This proves the lemma. 1 

From Lemma 3 and Lemma 1 we get together with the convexity estimate 
(3) the improved estimates for the higher norms: 

LEMMA 4. For every n > 0 and every b > 0 there are constants C = 
C(n,b)>Oando(n,b)>O,suchthatfotaZZyEFwithIy(,~<6: 

for all p > 0. 

Proof. By (3), for m > n 

1 Ax, 1, < c 1 Ax, p”’ 1 Ax, nlm lm - 

From Lemma 3, we conclude for every u > 0, I Ax, lo < C I y Inca) t?;“. Lemma 1 
gives 1 Ax, I,,, =g [ x9+1 Im + I x,, Irn < Cf$,$’ I y Im = CB’,L’m’ I y Im . If 6 > 0 is 
given, choose m = 2n, u = 2Zr + TL(h), and get ) Ax, In < C I y lo(n,a) fIib, 
with a(n, b) = max{a(u), 2721. Similarly for ( x, 1% , which proves Lemma 4. 1 

We are in business. From Lemma 5 we conclude, that x, is a Cauchy- 
Sequence in E, therefore liq+m x, =:xEE. On the other hand z, :=y - 
4(x,) -+ 0 in F. Since + is continuous, lim,,, t$(x,) = qb(x) and therefore 
qb(x) = y. Denoting with x := 4(y) this solution, we have established the 
existence part of the theorem. The estimate I $( y)ld < C I y I,, follows from 
(16). The moreover part fohows with our estimates by standard manipulations 
and will be omitted. 
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3. A COUNTEREXAMPLE FOR /\ = 2 

Let E be the Frechet-space of entire functions x(x) = z+,, ~,,a”, x E C, 
or equivalently the sequence space x = (x,),2, with lim,,, / x, I1ln = 0. The 
norms [j x [I,. defining the topology of E being given by 

I/ Xlif := C ) X, 12Yzn, Y ‘3 1. 
TL>O 

This graded FrCchet-space allows smoothing operators: define for j E 2, 
j > 0 the truncation operators T,: E: -+ E by (Ti(x))n = x, if 0 < n < j 
and ( T&x))~ = 0 f or n > j + 1. It follows immediately for all j 2 0 and 
1 \<p <r andxEE: 

II Tk4lL d (i)’ II x Ii0 

ll(l - T&)ll, G (;)‘+’ I! x Ill. . 

Therefore, defining the norms 1 Jn , n E R, n > 0 and the operators S,: E --f E, 
6 .> 1 by 

I x In :== II x /Ien 9 &I := Trlogo~ 9 

where [log 191 stands for the integer [log S] < log 0 ,( [log 81 + 1, the required 
estimates (1) and (2) are immediate. 

The map 4: E -+ E is then defined as follows: 

4(x) = 44 + P(% 4, x E E. 

A being the linear map defined as y = A(x) with y. = x0, ys* = ++I for 
n > 0, yzm+r = xa”-r for 71 > 1, and yk = xkVl otherwise. z = B(x, y), 
x, y E E, is given by z,, = xs,,ys., , n > 0 and .z, = 0 otherwise. 

We next verify that this + satisfies all our assumptions (4)-(8) with dr = 
da = I = d = 0 and h = 2. Clearly Ij A(x) < y2 /I x II7 and II B(x, y)ll, < 
II * ilr II Y IL (rev. G II x /I1 II Y II,>- H ence, if IIx11r < 1 we conclude // +(x)I/~ < 
(r2 + $) [j x j/r for r 3 1, and so j +(x)ln < (ezn 4 &) j x 1% for all x E E with 
j x j0 < 1 and all s > 0. Similarly we find for the derivative 

$‘(x)w = A(4 + iP(x, 4 

the estimate / +‘(x)D In < (e21a + 4) 1 ‘u JIE for all n 3 0 and all (x, V) E E x E 
with I x lo < 1. The remainder, R(x; V) = $B(n, w), satisfies 1 R(x; v)/, < 
& j v In J ZJ lo for all (x, w) E E x E. A direct computation shows that+(x): E -+ E 
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is a bijection, hence F(X) being continuous is an isomorphism by the closed 
graph theorem. We do not need this information, what we need are growth 
estimates of the inverse L(x; y) in the open set 1 x 1s < 1 only where we can 
apply the contraction principle. For y E E given, we have to solve y = $‘(x)w = 
A(o) + &B(x, w). From A-l(y) = w + @V(B(x, w)) we conclude with 
II Hy)ll, 9 II Y IL.8 , that II ‘0 IL < II Y IIre + i II x IIT2 II v II1 . Therefore, if r = 1 
ad II x II1 < 1, we find II w Ill 9 IIY III -I- 4 II w III and so (( w Ill 6 2 [I y (II. Hence 

II w IL < II y IL* + II x lb II Y II1 and consequently I 2, In := I J% r)l, d I Y lzn + 
[ x (sn 1 y Is, for all (x, y) E E x E with I x 1s < 1. We have checked that 4 
meets our assumptions (4)-(8) with X = 2. 

There is no local inverse $ of the map + in any open neighborhood of 0, 
since in every open neighborhood U of 0 we find a y E U with y $ C/J(E). Indeed, 
pick y = (y,&+s , ys = 4~ > 0 and yn = 0 otherwise. A simple direct com- 
putation yields a unique sequence x = (x,&a0 formally satisfying C(X) = y. 
It is given by xzm = (-4)(--~)(s~), for m >, 0 and x, = 0 otherwise. Clearly 
x $ E as limnz+oo [ x2,,, l(1/2m) = E # 0. A little more work shows, that the smooth 
injective map +, whose differential F(x), x E E is an isomorphism, has a nowhere 
dense range, compare also [I]. 

REFERENCES 

1. S. LOJASIEWICZ, JR., An example of a continuous injective polynomial map with 
nowhere dense range whose differential at each point is an isomorphism, Bull. Acad. 
Polon. Sci. 24, No. 12 (1976), 1109-1111. 

2. J. MOSER, A new technique for the construction of solutions of nonlinear differential 
equations, Proc. Nat. Acad. Sci. USA 47 (1961), 1824-1831. 

3. R. S. HAMILTON, The inverse function theorem of Nash and Moser, Preprint, Cornell 
Univ., 1974. 

4. F. SERGERAERT, Un th&o&me de fonctions implicites sur certains espaces de Fr&het 
et quelques applications, Ann. Sci. Ecole Norm. Sup. Sir. 4 5 (1972), 599-660. 

5. H. JACOBOWITZ, Implicit function theorems and isometric imbeddings, Ann. of Math. 
95 (1972), 191-225. 

6. L. H~RMANDER, The boundary problems of physical geodesy, Arch. Rational Me&. 
Anal. 62, No. 1 (1976), l-52. 

7. E. ZEHNDEX, Generalized implicit function theorems with applications to some small 
divisor problems, I, Comm. Pure Appl. Math. 28 (1975), 91-140. 


