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A technical inverse function theorem of Nash-Moser type is proved for
maps between Fréchet spaces allowing smoothing operators. A counterexample
shows that the growth requirements on the rightinverse of the linearized map
needed are minimal.

1. Serur aNnD Resurt

It is our aim to prove a technical inverse function theorem for maps between
‘Fréchet-spaces under minimal growth requirements on the rightinverse of the
linearized map.

We consider a continuous map ¢: E — F between two Fréchet-spaces E
and F, satisfying

$(0) = 0.

We are looking for conditions on ¢, which guarantee a local inverse map ,
satisfying ¢ o 44 = {d in an open neighborhood V of 0 € F, If E and F are Banach
spaces and if ¢ is of class C%, then ¢ is a local C1-diffeomorphism in some neigh-
borhood of 0, provided ¢'(0) is an isomorphism of E onto F. In contrast—the
situation in Fréchet-spaces is quite different. Take for example ¢: f — exp( f)
from C=(R) into itself, or from the Fréchet-space of entire functions into
itself. This map is smooth and injective, its derivative at every point is an
isomorphism of the Fréchet-space, but the range of ¢ is clearly nowhere dense,
hence there is no inverse map on an open set. Therefore in order to find an
inverse one has to require additional conditions on E and ¢. We formulate
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166 LOJASIEWICZ AND ZEHNDER

next some smoothness and growth conditions on ¢ and the inverse of the
linearized map, which allow a local inverse of ¢ and which are, as it turns out,
in a certain sense minimal.

Let E be a Fréchet-space with an increasing family of norms defining its
topology

[%lp <X s xcE, n

if n < m. We assume that E admits smoothing operators S,, ¢ > 1, that is
a one-parameter family of linear maps Sy: E — E, such that the following
estimates hold:

< 0Pz,
2)
< OO * x|y

(1 — Se)®)x
l ng ln

for xeE, § >> 1 and 0 < & < »n. The constant C > 0 may depend on %k and
n. In all the following estimates we let C denote various constants which may
always depend on the various norms | |, involved. These quantitative estimates
(2), which are crucial for our purpose, single out a restricted class of norms
among the increasing families of norms (1) defining the same topology of E.
In view of (2) we also have the convexity estimates at our disposal:

lxl <Clely™lxls, I=(1—ok+on 3

x€E, 0 <k<nand 0 < a<1. For example, the Fréchet-space C*(M),
M a compact manifold, is such a graded Fréchet-space allowing smoothing
operators, the norms being the C*-norms, or the Hélder-norms or the Sobolev-
norms. Another example is provided by the Fréchet-space of entire functions
dealed with later on. ~

Let ¢: E — F be a continuous map between two such graded Fréchet-spaces,
locally defined in a neighborhood of 0, assume ¢(0) = 0. The growth and
smoothness conditions on ¢, formulated next, will be valid on the following
open neighbothood UCE of 0, U = {xc E ! x|, < 1}, for some fixed I = 0.
Keeping in mind, that ¢(0) = 0, we require

[$(@)ln < C 1% |nsa “

for xe U and all n > 0 with some fixed d;, > 0. Every smooth nonlinear
partial differential operator on C*(M) for instance satisfies these growth con-
ditions, ! = 4, is in this case the order of derivatives involved. We also assume
¢: (UC E) — F to be differentiable in the sense that in F the following limit

lim - (4 + 10) — () = #'(x)o
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exists for all ¥ € U and v € E. This derivative, ¢': (U C E) x E — F is required
to satisfy:

[qﬁ'(x)@ ln < C(l X In+d2 (o] -+ o in+d2)

for some fixed dy = 0 and for all (x,v) € U X E and all n > 0. Again, smooth
nonlinear partial differential operators on C*(M) for instance meet these con-
ditions (5) as well as the conditions (8) below. By the way, if ¢': (UCE) X E—F
is continuous, then (4) is a consequence of (5) by means of the Taylorformula.
We shall assume, that the map ¢'(x): £ — F, x € U, possesses a rightinverse
in the following sense, There is a map L: (U C E) x F — E satisfying

Px)L(x)y =y, (xy)eUXF (6)

and the growth conditions

EL(x)y ‘n < C(l x l/\n-lvd [_’)’ id + ’[J’ \MH—d)) (7)

for all (x,y)e(UCE) X F, all n >0 with some d ;> 0 and some A > |.
Of course, if the norms | |, are labelled by integers, #n € N, then An is always
understood to be the integer [Mx], where for a € R, [4] stands for the integer
[a] < a < [a] + 1. We point out that, in contrast to the usual growth condi-
tions on L, we allow A > 1. In this case the norms on the right hand side of (7)
blow up with increasing n by a factor A. This means the loss of derivatives
in solving the linearized problem (6) increases with n. Finally, for the remainder

R(x; v) == (x + v) — ¢(x) — ¢'(x)v, we require
| R(x; 9)ln < CU 2 lnsa | 213 + 1010 1€ lnra)s (8)

forall x, x +to2eUandn > 0.

It is well known, that in the special case A = 1, the above assumptions
(4)-(8) on ¢ guarantee a local rightinverse ¢: (V CF) -~ UCE satisfying
#(¥)) = y. The map ¢ even belongs to the same category as ¢, namely it
satisfies the growth estimates (4) with a different d;, however, depending on d
in (7), see [3]. Indeed many such inverse function theorems of Moser—Nash
type, designed for quite different purposes are available nowadays if A = 1,
see for instance [2]-[7]. We shall prove the inverse function theorem for the
more general case A > |. The proof illustrates the power of the Newton
algorithm, introduced in this context by J. Moser [2]. We should mention
that the proof requires merely some mild modifications of the crude standard
techniques for which we refer in particular to the paper by R. Hamilton [3].

TuroreM. Assume ¢: (UCE) —F, $(0) =0, satisfies the growth and
smoothness assumptions (4)~(8) with 1 << A << 2. Then there are constants s, ,
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S and C > 0, where sy = O((2 — X)) and there is a map : (VCF)— U,
which 1s defined in the open neighborhood V := {yeF i |9 15, < 8} and which
satisfies $(0) = 0,

() =y yevV ®)

and the estimate | ()|, < Cly ls, -

Moreover, if ¢'(x): E—F, x€ U, is a bijection (that is if L(x)¢'(x)v = v,
(x,v) € U X E), then the inverse map : V — U is unique and it is a continuous
map. If in addition ¢" exists in U, and if ¢": U X E X E — F is continuous,
then o is differentiable on V and '(y)yw = L(y(¥))w for all (y,w)eV X F.
In particular, §': V X F — E is contimuous, if L: U X F — E is continuous.

The above existence statement, and this is our main point, is optimal in the
sense, that it does not hold true anymore for A > 2. A counterexample for
A = 2 is described below.

Remarks. (a) The above inverse map i does in general not allow estimates
like (4) anymore, if A > 1.

(b) The existence statement can be refined as follows. Replace the
estimates (4), (5) and (8) by the weaker growth conditions admitting on the
right hand side instead of the n-norms the p - n-norms for some g > 1. For
instance replace (4) by

l¢(x)'n g C , X {un+d1 . (10)

Then the proof below still establishes a rightinverse as long as A - pu < 2.
If however one knows in addition, that | L(x) ¢(x)|, << C | % |ynsq, then X << 2
is the only restriction. Observe that in view of (3) the estimates |d¢(x)], <
C(| % [n4a,)* lead to (10).

(c) The restriction A <2 of the statement is related to the Newton
iteration method, whose formally quadratic convergence enters crucially the
construction of .

2. PROOF OF THE THEOREM
To simplify the notation we may assume
di=d,=0 and [=4d, (11)
by relabeling the norms and increasing the value of d > 0 in (7). Recall, the

I-norm describes the neighborhood U := {xc E l | x|; < 1} CE in which the
estimates are valid. We now write down the modified Newton algorithm for the
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sequence x,€ E, p 2> 0, which as we shall demonstrate will converge to a

solution x of ¢(x) = y for small enough yeF. (Recall $(0) = 0). Starting
with x, = 0, we put for p >0

Xy = X%y + dx,
Ax,, L= SgpL(xp) zp ) 22) = J’ - ()b(xIJ)

The sequence 6, in the smoothing operators are defined by 6, := 2", with
1 <A <7 <C 2. We have used the assumption A < 2. We fix 7 := 27}d + 2)
and observe

(12)

By = 0,7 (13)

We next establish bounds for the norms | x, |,,, # > 0, which will be valid as
longas |x,l; <land |y, <1

LemMa 1. For every n > d, there exists a constant K, K = K, , such that
for allye E with |y |, < 1, we have

| % 1o < KB |31, (14)
Jor all p =0, as long as jx, |; < 1.

1= . 1 d+)
L(fl)-—ﬂ—x—(—;j—)—'}'lo, with IO_TT——] .

Proof. let n>d and assume [y, <1 and |a; |3 <1, f = 1,2,.,p.
By (4) and (11) we can estimate 2; = y — ¢(x;) as follows: | 2; [, < [y |, +
| $(5)ln < C(3 o+ 121, As long as |¥], <1 and | ], < 1, we have
| 2; |4 < C. Define & (depending on n) by

n=An—k) -+ d.

Respectively & := n — [(n — d)/A] in case the norms are labelled by integers.
We estimate x; := S, L(x;) 2; by means of (2) and (7):

{Ax; 1, < C8F | L(x;) 25 s
< OO %510 | 25 1o+ 1 25 1)
< CO/‘(I xj In + !y ‘n)y

where C > 1 is a constant independent of j. Repeated use of these estimates
yields, with 8; = 2¢,

P41

| Xpia I, < (P + 1) Cp+12k(-r 1) /(7=1) }y -
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But by definition (r — 1) L(n) > k, hence there is a constant K > 0 such that
P+ CrHQk -1 < K2 L+ . kP ;_g)

for all p > 0. Therefore |, |, < K™Y | y |, as we wanted to prove. ||

Now the low norms are estimated carefully, in order to prove that for y e F
sufficiently small, the sequence | 2, |; converges to zero:

Lemma 2. There exist M, sy, 8 > 0, such that if y €F satisfies |y [, <3
we have

. 2
|35 ls S MO* |3l pi=ood (15)

Sfor all p = 0 as long as I %, |a < 1. We find sq = Oy((2 — A)™).

Proof. Induction in p. By definition »,,, = x, + dx,, hence ¢(x,,) =
&(x,) + ¢'(x,) A, + R(x, , dx,) and with (6) and (12) we find z,,, =
Y = $(xp11) = $' ()1 — Sp ) L(x;) 2, — R(x, , Ax,). We estimate the first
term, using (5) with d, = 0, | x, |5 < 1, using (2) and (7) and abbreviating
Soi=2As+ d:

| $Gs)(1 — S Lixy) 7, s
ci(l— Se,,) L{x,) 25 |a

< €O | L(x,) 7,
< OO %y by | 3 la + 1 25 La)-
Since |x,]; <1 and |y]|; < 1, we have | 2, |; < C, from (4) we conclude

| 2, by < 1215, + Clx, 139 Hence applying Lemma 1 to |x, \‘,,o , We can
estimate further

<CHO5 1) |y 1, -

By definition of L(s,), 5, = As - d, we have s—d—L(sy) = s(1—(A—1)/(r—1))—
d(A — 1)/A(r — 1) — I, — d. Because of A < 7 we therefore can pick s > 0 such
that

s—d—L(sg) = pr

Recalling = 274 4 2) we find s, = Oy((2 — X)), Cleatly (s — d) > pr,
hence

[¢'(%o)(1 — So,) L{%5) 25 la < CO%1 |5 sy »
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the constant C being independent of p. In order to estimate the second term
of 2,1, we use |dx, |; = | SH,;L(xm) 2pla < 000 | L(xy) 2, |g < CO,% | 2, |,
which follows by (2) and (7) with | x, |; < 1. Therefore in view of () with
d, = 0, we get

| Ry 5 dxp)la < C | Ay |3 < COF 2, 03

We finally use the induction hypotheses, | z, |; < MO;* |y |, , and 65707 <
6541 (by definition of w) to conclude | R(x, ; dx,)|; < CM20 iy i"" Sum~
marizing we have shown so far, that

lzz)+1 }d C(l +M2|.y’so) 9;:1 ]ylsoi

for some C independent of p. We may assume M > C, with C as in the previous
estimate. Define 0 := min{l, (M — C) C-*M~2}. Therefore, if we restrict
| ¥ 1s, < 8, we find [z, |4 < MOY, |y |5, which completes the induction. ||

From Lemma 2 we deduce inductively for the sequence x, € E, p 0, that

Xp g < 1, if |y ls, < 8 for 8 sufficiently small. Indeed, if |x;1;, <1 for
0 <j<p, we know |dun;l, < CO2|5;l;, so by Lemma 2, |dx;|; <<
Co; | y |, forsome Cindependent of j. Therefore | x,, [; < ol duy 1y <
C(Ziee 67%79) | ¥ I, - But p > d, and so we get

[¥o1a e SC Yyl <C8 <1, (16)

choosing & smaller, if necessary. Hence (16) holds true for all p = 0. In the
following we shall always assume |y ls, < 8 with this particular choice of 8.
Lemma 1 and Lemma 2 are then valid for all p=0.

The trick now is to improve the estimate (15) to any power of 8, at the cost
of course of arbitrary high norms of y.

LemMma 3. For every a 2= 0O there are constants C = C(a) > 0 and n(a) > 0
such that

1251a < C 1y latw 0;a (17)
for allp > 0 and all y € E with | y |, <.

Proof. The statement is obviously true for 0 < e < p (Lemma 2). Let

a 2> p and assume the statement to hold true for this @, we shall prove it for
a - d. We know

! Fptl [d = c I(l - SB,,) L(xﬂ) p ]d + I R(xz) ) Axp)[d .



172 LOJASIEWICZ AND ZEHNDER

Proceeding as in Lemma 2 we plck no , o = An+ d with n — d — L(ng) >
7(a + d), such that

(1 — o) L{xy) 2, s < COZE | 31, -

On the other hand, | R(x, , 4x,)|; < C| dx, |5 < C82%| 2, |3 can be estimated
by the induction assumption:

| R(%y , A%,)a < C |y By 6242,

By the convexity estimate (3) and using [y [ <1, we estimate [y |3, <
C |9 lanta) - Also, 2a —2d = (a4 d), if a = (2 — 7)Y + 2)d, hence in
particular if @ > p by our choice of p. Therefore |R(x,,dx,)s <
C1Y lanta) e;g-ll-"d)' We proved, | 25,3 1 < C Y lntara) 0;:1“” forall p > 0, with
n(a + d) := max{n, , 2n(a)}. Trivially | 25 ls <[ l¢ < C1Y [niara) b, by
changing the constant if necessary. This proves the lemma. [

From Lemma 3 and Lemma 1 we get together with the convexity estimate
(3) the improved estimates for the higher norms:

Levma 4. For every n >0 and every b = 0 there are constants C =
C(n, b) > 0 and o(n, b) > 0, such that for all y e F with | y |, < &:

I Axp ‘n <C ly |a(n,b) sz
<

12510 < C 19 ot 05"

for al p >0
Proof. By (3), form >n

| Ax, | < C | Aoty |77 | Au, |2/,

From Lemma 3, we conclude for everya >0, | dx,, |, < C | ¥ |,(5) 65" Lemma 1
gives | Ay << | %941 b | %y I < OO | 3 [ = COE [y |, IE6 > O i
given, choose m = 2n, a = 2b + 7L(2nm), and get | dx, |, < C| ¥ lota) 05
with o(n, b) = max{n(a), 2n}. Similarly for | 2, |, , which proves Lemma 4.

We are in business. From Lemma 5 we conclude, that x, is a Cauchy-
Sequence in E, therefore lim,,,, x, =: x € E. On the other hand 2z, := y —
#(x,) — 0 in F. Since ¢ is continuous, lim,,., ¢(x,) = ¢(x) and therefore
#(x) = y. Denoting with x := )(y) this solution, we have established the
existence part of the theorem. The estimate | fi(y)l; < C |y |,, follows from
(16). The moreover part follows with our estimates by standard mampulatlons
and will be omitted.
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3. A COUNTEREXAMPLE FOR A = 2

Let E be the Fréchet-space of entire functions x(2) = Y 5 #,2", 2€ C,
or equivalently the sequence space ¥ = (x,),3 With lim,,,. | x, [}/* = 0. The
norms || x ||, defining the topology of E being given by

2 .
el o= 3 |2, 77 7 =1
70

This graded Fréchet-space allows smoothing operators: define for je Z,
7 = 0 the truncation operators Ty E— E by (Ty(x)), =, if 0 <n <j
and (Ty(x)), = 0 for n =7+ 1. It follows immediately for all j > 0 and
l<p<rand xekE:

17 < () sl

It — 2, < () e

Therefore, defining the norms | |, , € R, # >> 0 and the operators Sy £ — E,
8 >1 by

[ 2], 1= xnan » Sg 1= Tliogel »

where [log 6) stands for the integer [log 6] < log 8 < [log §] + 1, the required
estimates (1) and (2) are immediate.
The map ¢: E — E is then defined as follows:

#(x) = A(x) + B(x,»), «xek.

A being the linear map defined as y = A(x) with ¥y = %, Yan = Xpanr for
n 220, Yonpg = Xgny; for =1, and y, = x,_; otherwise. 2z = B(x, »),
x,y€ E, is given by 2 = Xpn¥ga, # > 0 and 2, = 0 otherwise.

We next verify that this ¢ satisfies all our assumptions (4)-(8) with d;
dy=1=d=0 and A =2. Clearly || A(x)ll, <r?{ x|, and | B(x, y)il,
V0,3l (resp. <|lyll],). Hence, if |zl <1 we conclude $(x)l, <
(r2+ Hllxfl, for r =1, and so |$(x)l, < (" + ) | x|, for all xe E with
| %1, < 1 and all # > 0. Similarly we find for the derivative

AN

¢'(x)v = A(v) + 3B(», v)

the estimate |$'(x)0 |, <(** + ) [v|, for all  >> 0 and all (x,v)e E X E
with |x |, < 1. The remainder, R(x; v} = }B(v, v), satisfies | R(x; v)|,, <
} v, v, forall(x, v)e E x E. A direct computation shows that¢'(x): E— E
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is a bijection, hence ¢'(x) being continuous is an isomorphism by the closed
graph theorem. We do not need this information, what we need are growth
estimates of the inverse L(x; y) in the open set | x |, << 1 only where we can
apply the contraction principle. For y € E given, we have to solve y = ¢'(x)v =
A(v) + $B(x,v). From A7Yy)=v+ $4AY(B(x,v)) we conclude with
1A, <1y, that [oll, < ¥ lla -+ 312 lhe]) vl . Therefore, if r = 1
and ||, < 1, we find (| 0]}, < ||y fy+ 3l vlyand so [ of, <20y, . Hence
ol <fiyle+ixl={yl; and consequently o |, := [ L(x, y)ln < | fan +
[ % {on | ¥ lg, for all (x,y)e E X E with | x|, << 1. We have checked that ¢
meets our assumptions (4)—(8) with A = 2.

There is no local inverse b of the map ¢ in any open neighborhood of 0,
since in every open neighborhood U of 0 we find a y € U with y ¢ ¢(E). Indeed,
pick ¥ = (¥,)nze » ¥3 = 4€ > 0 and y, = 0 otherwise. A simple direct com-
putation yields a unique sequence x = (x,),5, formally satisfying &(x) = y.
It is given by xmm = (—4)(—€)®™, for m > 0 and x, = 0 otherwise. Clearly
x ¢ E as lim,, o | %gm [1/2" = € % 0. A little more work shows, that the smooth
injective map ¢, whose differential ¢’(x), x € E is an isomorphism, has a nowhere
dense range, compare also {1].
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