JOURNAL OF FUNCTIONAL ANALYSIS 33, 165-174 (1979)

An Inverse Function Theorem in Fréchet-Spaces

S. Lojasiewicz, Jr.

Institute of Mathematics, Polish Academy of Sciences, Solskiego 30, 31-027 Crakow, Poland

AND

E. Zehnder

Mathematisches Institut de Ruhr-Universität Bochum, 4630 Bochum 1, West Germany

Communicated by Peter D. Lax

Received March 15, 1978

A technical inverse function theorem of Nash-Moser type is proved for maps between Fréchet spaces allowing smoothing operators. A counterexample shows that the growth requirements on the rightinverse of the linearized map needed are minimal.

1. SETUP AND RESULT

It is our aim to prove a technical inverse function theorem for maps between Fréchet-spaces under minimal growth requirements on the rightinverse of the linearized map.

We consider a continuous map $\phi: E \to F$ between two Fréchet-spaces E and F, satisfying

$$\phi(0) = 0.$$

We are looking for conditions on ϕ , which guarantee a local inverse map ψ , satisfying $\phi \circ \psi = id$ in an open neighborhood V of $0 \in F$. If E and F are Banach spaces and if ϕ is of class C^1 , then ϕ is a local C^1 -diffeomorphism in some neighborhood of 0, provided $\phi'(0)$ is an isomorphism of E onto F. In contrast—the situation in Fréchet-spaces is quite different. Take for example $\phi: f \to \exp(f)$ from $C^{\infty}(\mathbb{R})$ into itself, or from the Fréchet-space of entire functions into itself. This map is smooth and injective, its derivative at every point is an isomorphism of the Fréchet-space, but the range of ϕ is clearly nowhere dense, hence there is no inverse map on an open set. Therefore in order to find an inverse one has to require additional conditions on E and ϕ . We formulate

next some smoothness and growth conditions on ϕ and the inverse of the linearized map, which allow a local inverse of ϕ and which are, as it turns out, in a certain sense minimal.

Let E be a Fréchet-space with an increasing family of norms defining its topology

$$|x|_n \leqslant |x|_m, \qquad x \in E, \tag{1}$$

if $n \le m$. We assume that E admits smoothing operators S_{θ} , $\theta \ge 1$, that is a one-parameter family of linear maps S_{θ} : $E \to E$, such that the following estimates hold:

$$|(1 - S_{\theta})(x)|_{k} \leqslant C\theta^{-(n-k)} \mid x \mid_{n}$$

$$|S_{\theta}x|_{n} \leqslant C\theta^{n-k} \mid x \mid_{k}$$
(2)

for $x \in E$, $\theta \ge 1$ and $0 \le k \le n$. The constant C > 0 may depend on k and n. In all the following estimates we let C denote various constants which may always depend on the various norms $|\cdot|_n$ involved. These quantitative estimates (2), which are crucial for our purpose, single out a restricted class of norms among the increasing families of norms (1) defining the same topology of E. In view of (2) we also have the convexity estimates at our disposal:

$$|x|_{l} \leq C |x|_{k}^{1-\alpha} |x|_{n}^{\alpha}, \qquad l = (1-\alpha)k + \alpha n,$$
 (3)

 $x \in E$, $0 \le k \le n$ and $0 \le \alpha \le 1$. For example, the Fréchet-space $C^{\infty}(M)$, M a compact manifold, is such a graded Fréchet-space allowing smoothing operators, the norms being the C^k -norms, or the Hölder-norms or the Sobolevnorms. Another example is provided by the Fréchet-space of entire functions dealed with later on.

Let $\phi \colon E \to F$ be a continuous map between two such graded Fréchet-spaces, locally defined in a neighborhood of 0, assume $\phi(0) = 0$. The growth and smoothness conditions on ϕ , formulated next, will be valid on the following open neighborhood $U \subset E$ of 0, $U = \{x \in E \mid |x|_l < 1\}$, for some fixed $l \ge 0$. Keeping in mind, that $\phi(0) = 0$, we require

$$|\phi(x)|_n \leqslant C |x|_{n+d_1} \tag{4}$$

for $x \in U$ and all $n \geqslant 0$ with some fixed $d_1 \geqslant 0$. Every smooth nonlinear partial differential operator on $C^{\infty}(M)$ for instance satisfies these growth conditions, $l = d_1$ is in this case the order of derivatives involved. We also assume $\phi: (U \subset E) \to F$ to be differentiable in the sense that in F the following limit

$$\lim_{t\to 0}\frac{1}{t}\left(\phi(x+tv)-\phi(x)\right)=:\phi'(x)v$$

exists for all $x \in U$ and $v \in E$. This derivative, ϕ' : $(U \subset E) \times E \to F$ is required to satisfy:

$$|\phi'(x)v|_n \leqslant C(|x|_{n+d_2}|v|_l+|v|_{n+d_2})$$

for some fixed $d_2 \ge 0$ and for all $(x, v) \in U \times E$ and all $n \ge 0$. Again, smooth nonlinear partial differential operators on $C^{\infty}(M)$ for instance meet these conditions (5) as well as the conditions (8) below. By the way, if $\phi': (U \subset E) \times E \to F$ is continuous, then (4) is a consequence of (5) by means of the Taylorformula. We shall assume, that the map $\phi'(x): E \to F$, $x \in U$, possesses a rightinverse in the following sense. There is a map $L: (U \subset E) \times F \to E$ satisfying

$$\phi'(x)L(x)y = y, \qquad (x,y) \in U \times F \tag{6}$$

and the growth conditions

$$|L(x)y|_n \leqslant C(|x|_{\lambda n+d}|y|_d + |y|_{\lambda n+d}), \tag{7}$$

for all $(x, y) \in (U \subset E) \times F$, all $n \ge 0$ with some $d \ge 0$ and some $\lambda \ge 1$. Of course, if the norms $|\cdot|_n$ are labelled by integers, $n \in \mathbb{N}$, then λn is always understood to be the integer $[\lambda n]$, where for $a \in \mathbb{R}$, [a] stands for the integer $[a] \le a < [a] + 1$. We point out that, in contrast to the usual growth conditions on L, we allow $\lambda > 1$. In this case the norms on the right hand side of (7) blow up with increasing n by a factor λ . This means the loss of derivatives in solving the linearized problem (6) increases with n. Finally, for the remainder $R(x; v) := \phi(x + v) - \phi(x) - \phi'(x)v$, we require

$$|R(x;v)|_{n} \leqslant C(|x|_{n+d_{2}}|v|_{l}^{2}+|v|_{l}|v|_{n+d_{2}}), \tag{8}$$

for all $x, x + v \in U$ and $n \geqslant 0$.

It is well known, that in the special case $\lambda = 1$, the above assumptions (4)-(8) on ϕ guarantee a local rightinverse ψ : $(V \subset F) \to U \subset E$ satisfying $\phi(\psi(y)) = y$. The map ψ even belongs to the same category as ϕ , namely it satisfies the growth estimates (4) with a different d_2 however, depending on d in (7), see [3]. Indeed many such inverse function theorems of Moser-Nash type, designed for quite different purposes are available nowadays if $\lambda = 1$, see for instance [2]-[7]. We shall prove the inverse function theorem for the more general case $\lambda > 1$. The proof illustrates the power of the Newton algorithm, introduced in this context by J. Moser [2]. We should mention that the proof requires merely some mild modifications of the crude standard techniques for which we refer in particular to the paper by R. Hamilton [3].

THEOREM. Assume $\phi: (U \subseteq E) \to F$, $\phi(0) = 0$, satisfies the growth and smoothness assumptions (4)–(8) with $1 \le \lambda < 2$. Then there are constants s_0 ,

 δ and C > 0, where $s_0 = O_2((2 - \lambda)^{-1})$ and there is a map $\psi: (V \subset F) \to U$, which is defined in the open neighborhood $V := \{y \in F \mid |y|_{s_0} < \delta\}$ and which satisfies $\psi(0) = 0$,

$$\phi(\psi(y)) = y, \qquad y \in V \tag{9}$$

and the estimate $|\psi(y)|_l \leqslant C |y|_{s_0}$.

Moreover, if $\phi'(x)$: $E \to F$, $x \in U$, is a bijection (that is if $L(x) \phi'(x)v = v$, $(x, v) \in U \times E$), then the inverse map ψ : $V \to U$ is unique and it is a continuous map. If in addition ϕ'' exists in U, and if ϕ'' : $U \times E \times E \to F$ is continuous, then ψ is differentiable on V and $\psi'(y)w = L(\psi(y))w$ for all $(y, w) \in V \times F$. In particular, ψ' : $V \times F \to E$ is continuous, if L: $U \times F \to E$ is continuous.

The above existence statement, and this is our main point, is optimal in the sense, that it does not hold true anymore for $\lambda \ge 2$. A counterexample for $\lambda = 2$ is described below.

Remarks. (a) The above inverse map ψ does in general not allow estimates like (4) anymore, if $\lambda > 1$.

(b) The existence statement can be refined as follows. Replace the estimates (4), (5) and (8) by the weaker growth conditions admitting on the right hand side instead of the *n*-norms the $\mu \cdot n$ -norms for some $\mu > 1$. For instance replace (4) by

$$|\phi(x)|_n \leqslant C |x|_{\mu n + d_1}. \tag{10}$$

Then the proof below still establishes a rightinverse as long as $\lambda \cdot \mu < 2$. If however one knows in addition, that $|L(x)\phi(x)|_n \leqslant C |x|_{\lambda n+d}$, then $\lambda < 2$ is the only restriction. Observe that in view of (3) the estimates $|\phi(x)|_n \leqslant C(|x|_{n+d_n})^{\mu}$ lead to (10).

(c) The restriction $\lambda < 2$ of the statement is related to the Newton iteration method, whose formally quadratic convergence enters crucially the construction of ψ .

2. Proof of the Theorem

To simplify the notation we may assume

$$d_1 = d_2 = 0 \quad \text{and} \quad l = d, \tag{11}$$

by relabeling the norms and increasing the value of d > 0 in (7). Recall, the l-norm describes the neighborhood $U := \{x \in E \mid |x|_l < 1\} \subset E$ in which the estimates are valid. We now write down the modified Newton algorithm for the

sequence $x_p \in E$, $p \ge 0$, which as we shall demonstrate will converge to a solution x of $\phi(x) = y$ for small enough $y \in F$. (Recall $\phi(0) = 0$). Starting with $x_0 = 0$, we put for $p \ge 0$

$$x_{p+1} = x_p + \Delta x_p$$

$$\Delta x_p := S_{\theta_p} L(x_p) z_p, \qquad z_p = y - \phi(x_p).$$
(12)

The sequence θ_p in the smoothing operators are defined by $\theta_p := 2^{(\tau^p)}$, with $1 \le \lambda < \tau < 2$. We have used the assumption $\lambda < 2$. We fix $\tau := 2^{-1}(\lambda + 2)$ and observe

$$\theta_{p+1} = \theta_p^{\tau}. \tag{13}$$

We next establish bounds for the norms $|x_p|_n$, $n \ge 0$, which will be valid as long as $|x_p|_d < 1$ and $|y|_d \le 1$.

LEMMA 1. For every $n \ge d$, there exists a constant K, $K = K_n$, such that for all $y \in E$ with $|y|_d \le 1$, we have

$$|x_p|_n \leqslant K\theta_p^{L(n)} |y|_n \tag{14}$$

for all $p \ge 0$, as long as $|x_p|_d < 1$.

$$L(n) := n \frac{1}{\lambda} \left(\frac{\lambda - 1}{\tau - 1} \right) + l_0, \quad \text{with} \quad l_0 = \frac{1}{\lambda} \frac{d + \lambda}{\tau - 1}.$$

Proof. Let $n \ge d$ and assume $|y|_d \le 1$ and $|x_j|_d < 1$, j = 1, 2, ..., p. By (4) and (11) we can estimate $z_j = y - \phi(x_j)$ as follows: $|z_j|_n \le |y|_n + |\phi(x_j)|_n \le C(|y|_n + |x_j|_n)$. As long as $|y|_d \le 1$ and $|x_j|_d < 1$, we have $|z_j|_d \le C$. Define k (depending on n) by

$$n = \lambda(n-k) + d.$$

Respectively $k := n - [(n-d)/\lambda]$ in case the norms are labelled by integers. We estimate $x_j := S_{\theta_j} L(x_j) z_j$ by means of (2) and (7):

$$| \Delta x_j |_n \leq C\theta_j^k | L(x_j) z_j |_{n-k}$$

$$\leq C\theta_j^k (| x_j |_n | z_j |_d + | z_j |_n)$$

$$\leq C\theta_j^k (| x_j |_n + | y |_n),$$

where $C \geqslant 1$ is a constant independent of j. Repeated use of these estimates yields, with $\theta_j = 2^{(r^j)}$,

$$|x_{p+1}|_n \leq (p+1) C^{p+1} 2^{k(\tau^{p+1}-1)/(\tau-1)} |y|_n$$

But by definition $(\tau - 1)L(n) > k$, hence there is a constant K > 0 such that

$$(p+1) C^{p+1} 2^{k\tau^{p+1}/(\tau-1)} \leqslant K 2^{L(n)\tau^{p+1}} = K \theta_{p+1}^{L(n)}$$

for all $p \geqslant 0$. Therefore $|x_{p+1}|_n \leqslant K\theta_{p+1}^{L(n)} |y|_n$ as we wanted to prove.

Now the low norms are estimated carefully, in order to prove that for $y \in F$ sufficiently small, the sequence $|z_p|_d$ converges to zero:

LEMMA 2. There exist M, s_0 , $\delta > 0$, such that if $y \in F$ satisfies $|y|_{s_0} \leq \delta$ we have

$$|z_p|_d \leq M\theta_p^{-\mu} |y|_{s_0}, \qquad \mu := \frac{2+\tau}{2-\tau} d$$
 (15)

for all $p \ge 0$ as long as $|x_p|_d < 1$. We find $s_0 = O_2((2-\lambda)^{-1})$.

Proof. Induction in p. By definition $x_{p+1} = x_p + \Delta x_p$, hence $\phi(x_{p+1}) = \phi(x_p) + \phi'(x_p) \Delta x_p + R(x_p, \Delta x_p)$ and with (6) and (12) we find $z_{p+1} = y - \phi(x_{p+1}) = \phi'(x_p)(1 - S_{\theta_p})L(x_p) z_p - R(x_p, \Delta x_p)$. We estimate the first term, using (5) with $d_2 = 0$, $|x_p|_d \leq 1$, using (2) and (7) and abbreviating $s_0 := \lambda s + d$:

$$\begin{split} | \phi(x_p)(1 - S_{\theta_p}) \, L(x_p) \, z_p |_d \\ & \leq C \, |(1 - S_{\theta_p}) \, L(x_p) \, z_p |_d \\ \\ & \leq C \theta_p^{-(s-d)} \, | \, L(x_p) \, z_p |_s \\ \\ & \leq C \theta_p^{-(s-d)}(| \, x_p \, |_{s_n} \, | \, z_p \, |_d + | \, z_p \, |_{s_n}). \end{split}$$

Since $|x_p|_d \leqslant 1$ and $|y|_d \leqslant 1$, we have $|z_p|_d \leqslant C$, from (4) we conclude $|z_p|_{s_0} \leqslant |y|_{s_0} + C |x_p|_{s_0}$. Hence applying Lemma 1 to $|x_p|_{s_0}$, we can estimate further

$$\leq C\theta_p^{-(s-d)}(\theta_p^{L(s_0)}+1)|y|_{s_0}.$$

By definition of $L(s_0)$, $s_0 = \lambda s + d$, we have $s - d - L(s_0) = s(1 - (\lambda - 1)/(\tau - 1)) - d(\lambda - 1)/\lambda(\tau - 1) - l_0 - d$. Because of $\lambda < \tau$ we therefore can pick s > 0 such that

$$s-d-L(s_0)\geqslant \mu\tau$$
.

Recalling $\tau = 2^{-1}(\lambda + 2)$ we find $s_0 = O_2((2 - \lambda)^{-1})$. Clearly $(s - d) \ge \mu \tau$, hence

$$|\phi'(x_p)(1-S_{\theta_p})L(x_p)z_p|_d\leqslant C\theta_{p+1}^{-\mu}|y|_{s_0},$$

the constant C being independent of p. In order to estimate the second term of z_{p+1} , we use $|\Delta x_p|_d = |S_{\theta_p} L(x_p) z_p|_d \leqslant C\theta_p^d |L(x_p) z_p|_0 \leqslant C\theta_p^d |z_p|_d$ which follows by (2) and (7) with $|x_p|_d \leqslant 1$. Therefore in view of (8) with $d_2 = 0$, we get

$$|R(x_p; \Delta x_p)|_d \leqslant C |\Delta x_p|_d^2 \leqslant C\theta_p^{2d} |z_p|_d^2.$$

We finally use the induction hypotheses, $|z_p|_d \leq M\theta_p^{-\mu} |y|_{s_0}$, and $\theta_p^{2d}\theta_p^{-2\mu} \leq \theta_{p+1}^{-\mu}$ (by definition of μ) to conclude $|R(x_p; \Delta x_p)|_d \leq CM^2\theta_{p+1}^{-\mu} |y|_{s_0}^2$. Summarizing we have shown so far, that

$$|z_{p+1}|_d \leqslant C(1+M^2|y|_{s_0}) \theta_{p+1}^{-\mu} |y|_{s_0}$$

for some C independent of p. We may assume M > C, with C as in the previous estimate. Define $\delta := \min\{1, (M-C) C^{-1}M^{-2}\}$. Therefore, if we restrict $|y|_{s_0} \leq \delta$, we find $|z_{p+1}|_d \leq M\theta_{p+1}^{-\mu} |y|_{s_0}$ which completes the induction.

From Lemma 2 we deduce inductively for the sequence $x_p \in E, p \geqslant 0$, that $|x_p|_d < 1$, if $|y|_{s_0} < \delta$ for δ sufficiently small. Indeed, if $|x_j|_d < 1$ for $0 \leqslant j \leqslant p$, we know $|\Delta x_j|_d \leqslant C\theta_j^{-d} |x_j|_d$, so by Lemma 2, $|\Delta x_j|_d \leqslant C\theta_j^{-(\mu-d)} |y|_{s_0}$ for some C independent of j. Therefore $|x_{p+1}|_d \leqslant \sum_{j=0}^p |\Delta x_j|_d \leqslant C(\sum_{j=0}^\infty \theta_j^{-(\mu-d)}) |y|_{s_0}$. But $\mu > d$, and so we get

$$|x_{p+1}|_d \leqslant C |y|_{s_0} < C\delta < 1, \tag{16}$$

choosing δ smaller, if necessary. Hence (16) holds true for all $p \geqslant 0$. In the following we shall always assume $|y|_{s_0} < \delta$ with this particular choice of δ . Lemma 1 and Lemma 2 are then valid for all $p \geqslant 0$.

The trick now is to improve the estimate (15) to any power of θ_p at the cost of course of arbitrary high norms of y.

Lemma 3. For every $a \geqslant 0$ there are constants C = C(a) > 0 and n(a) > 0 such that

$$|z_p|_d \leqslant C |y|_{n(a)} \theta_p^{-a} \tag{17}$$

for all $p \geqslant 0$ and all $y \in E$ with $|y|_{s_0} < \delta$.

Proof. The statement is obviously true for $0 \le a \le \mu$ (Lemma 2). Let $a \ge \mu$ and assume the statement to hold true for this a, we shall prove it for a+d. We know

$$|z_{p+1}|_d \leqslant C |(1-S_{\theta_p})L(x_p)z_p|_d + |R(x_p, \Delta x_p)|_d.$$

Proceeding as in Lemma 2 we pick n_0 , $n_0 = \lambda n + d$ with $n - d - L(n_0) \geqslant \tau(a+d)$, such that

$$|(1-S_{\theta})L(x_{p})z_{p}|_{d} \leq C\theta_{p+1}^{-(a+d)}|y|_{n_{0}}.$$

On the other hand, $|R(x_p, \Delta x_p)|_d \leqslant C |\Delta x_p|_d^2 \leqslant C\theta_p^{2d} |x_p|_d^2$ can be estimated by the induction assumption:

$$|R(x_n, \Delta x_n)|_d \leq C |y|_{n(a)}^2 \theta_n^{-2(a-d)}$$
.

By the convexity estimate (3) and using $|y|_0 \le 1$, we estimate $|y|_{n(a)}^2 \le C |y|_{2n(a)}$. Also, $2a - 2d \ge \tau(a + d)$, if $a \ge (2 - \tau)^{-1}(\tau + 2)d$, hence in particular if $a \ge \mu$ by our choice of μ . Therefore $|R(x_p, \Delta x_p)|_d \le C |y|_{2n(a)} \theta_{p+1}^{-(a+d)}$. We proved, $|x_{p+1}|_d \le C |y|_{n(a+d)} \theta_{p+1}^{-(a+d)}$ for all $p \ge 0$, with $n(a+d) := \max\{n_0, 2n(a)\}$. Trivially $|x_0|_d \le |y|_d \le C |y|_{n(a+d)} \theta_0^{-(a+d)}$, by changing the constant if necessary. This proves the lemma.

From Lemma 3 and Lemma 1 we get together with the convexity estimate (3) the improved estimates for the higher norms:

LEMMA 4. For every $n \ge 0$ and every $b \ge 0$ there are constants C = C(n, b) > 0 and $\sigma(n, b) > 0$, such that for all $y \in F$ with $|y|_{s_0} < \delta$:

$$|\Delta x_p|_n \leqslant C |y|_{\sigma(n,b)} \theta_p^{-b}$$
$$|z_p|_n \leqslant C |y|_{\sigma(n,b)} \theta_p^{-b}$$

for all $p \geqslant 0$.

Proof. By (3), for m > n

$$|\Delta x_n|_n \leqslant C |\Delta x_n|_0^{(1-n/m)} |\Delta x_n|_m^{n/m}.$$

From Lemma 3, we conclude for every $a \ge 0$, $|\Delta x_p|_0 \le C |y|_{n(a)} \theta_p^{-a}$. Lemma 1 gives $|\Delta x_p|_m \le |x_{p+1}|_m + |x_p|_m \le C\theta_{p+1}^{L(m)} |y|_m = C\theta_p^{\tau L(m)} |y|_m$. If b > 0 is given, choose m = 2n, $a = 2b + \tau L(2n)$, and get $|\Delta x_p|_n \le C |y|_{\sigma(n,b)} \theta_p^{-b}$, with $\sigma(n, b) = \max\{n(a), 2n\}$. Similarly for $|x_p|_n$, which proves Lemma 4.

We are in business. From Lemma 5 we conclude, that x_p is a Cauchy-Sequence in E, therefore $\lim_{n\to\infty}x_n=:x\in E$. On the other hand $z_n:=y-\phi(x_n)\to 0$ in F. Since ϕ is continuous, $\lim_{p\to\infty}\phi(x_p)=\phi(x)$ and therefore $\phi(x)=y$. Denoting with $x:=\psi(y)$ this solution, we have established the existence part of the theorem. The estimate $|\psi(y)|_d\leqslant C|y|_{s_0}$ follows from (16). The moreover part follows with our estimates by standard manipulations and will be omitted.

3. A Counterexample for $\lambda = 2$

Let E be the Fréchet-space of entire functions $x(z) = \sum_{n \ge 0} x_n z^n$, $z \in C$, or equivalently the sequence space $x = (x_n)_{n \ge 0}$ with $\lim_{n \to \infty} |x_n|^{1/n} = 0$. The norms $||x||_r$ defining the topology of E being given by

$$||x||_r^2 := \sum_{n\geqslant 0} |x_n|^2 r^{2n}, \quad r\geqslant 1.$$

This graded Fréchet-space allows smoothing operators: define for $j \in Z$, $j \ge 0$ the truncation operators $T_j : E \to E$ by $(T_j(x))_n = x_n$ if $0 \le n \le j$ and $(T_j(x))_n = 0$ for $n \ge j+1$. It follows immediately for all $j \ge 0$ and $1 \le \rho \le r$ and $x \in E$:

$$||T_j(x)||_r \leqslant \left(\frac{r}{\rho}\right)^j ||x||_\rho$$

$$\|(1-T_j)(x)\|_{\rho} \leqslant \left(\frac{\rho}{r}\right)^{j+1} \|x\|_{r}.$$

Therefore, defining the norms $|\cdot|_n$, $n \in \mathbb{R}$, $n \ge 0$ and the operators $S_\theta \colon E \to E$, $\theta \ge 1$ by

$$|x|_n := ||x||_{e^n}, \quad S_\theta := T_{[\log \theta]},$$

where $[\log \theta]$ stands for the integer $[\log \theta] \le \log \theta \le [\log \theta] + 1$, the required estimates (1) and (2) are immediate.

The map $\phi: E \to E$ is then defined as follows:

$$\phi(x) = A(x) + \frac{1}{4}B(x, x), \qquad x \in E.$$

A being the linear map defined as y = A(x) with $y_0 = x_0$, $y_{2^n} = x_{2^{n+1}}$ for $n \ge 0$, $y_{2^{n+1}} = x_{2^{n-1}}$ for $n \ge 1$, and $y_k = x_{k-1}$ otherwise. z = B(x, y), $x, y \in E$, is given by $x_{2^n} = x_{2^n}y_{2^n}$, $n \ge 0$ and $x_k = 0$ otherwise.

We next verify that this ϕ satisfies all our assumptions (4)–(8) with $d_1 = d_2 = l = d = 0$ and $\lambda = 2$. Clearly $||A(x)||_r \leqslant r^2 ||x||_r$ and $||B(x,y)||_r \leqslant ||x||_r ||y||_1$ (resp. $\leqslant ||x||_1 ||y||_r$). Hence, if $||x||_1 < 1$ we conclude $||\phi(x)||_r \leqslant (r^2 + \frac{1}{4}) ||x||_r$ for $r \geqslant 1$, and so $||\phi(x)||_n \leqslant (e^{2n} + \frac{1}{4}) ||x||_n$ for all $x \in E$ with $||x||_0 < 1$ and all $n \geqslant 0$. Similarly we find for the derivative

$$\phi'(x)v = A(v) + \frac{1}{2}B(x,v)$$

the estimate $|\phi'(x)v|_n \leq (e^{2n} + \frac{1}{2}) |v|_n$ for all $n \geq 0$ and all $(x, v) \in E \times E$ with $|x|_0 < 1$. The remainder, $R(x; v) = \frac{1}{4}B(v, v)$, satisfies $|R(x; v)|_n \leq \frac{1}{4}|v|_n |v|_0$ for all $(x, v) \in E \times E$. A direct computation shows that $\phi'(x) : E \to E$

is a bijection, hence $\phi'(x)$ being continuous is an isomorphism by the closed graph theorem. We do not need this information, what we need are growth estimates of the inverse L(x;y) in the open set $|x|_0 < 1$ only where we can apply the contraction principle. For $y \in E$ given, we have to solve $y = \phi'(x)v = A(v) + \frac{1}{2}B(x,v)$. From $A^{-1}(y) = v + \frac{1}{2}A^{-1}(B(x,v))$ we conclude with $||A^{-1}(y)||_r \le ||y||_{r^2}$, that $||v||_r \le ||y||_{r^2} + \frac{1}{2}||x||_{r^2}||v||_1$. Therefore, if r = 1 and $||x||_1 < 1$, we find $||v||_1 \le ||y||_1 + \frac{1}{2}||v||_1$ and so $||v||_1 \le 2||y||_1$. Hence $||v||_r \le ||y||_{r^2} + ||x||_{r^2}||y||_1$ and consequently $||v||_n := |L(x,y)|_n \le ||y||_{2n} + ||x||_{2n} ||y||_0$, for all $(x,y) \in E \times E$ with $||x||_0 < 1$. We have checked that ϕ meets our assumptions (4)–(8) with $\lambda = 2$.

There is no local inverse ψ of the map ϕ in any open neighborhood of 0, since in every open neighborhood U of 0 we find a $y \in U$ with $y \notin \phi(E)$. Indeed, pick $y = (y_n)_{n \geqslant 0}$, $y_3 = 4\epsilon > 0$ and $y_n = 0$ otherwise. A simple direct computation yields a unique sequence $x = (x_n)_{n \geqslant 0}$ formally satisfying $\phi(x) = y$. It is given by $x_{2^m} = (-4)(-\epsilon)^{(2^m)}$, for $m \geqslant 0$ and $x_n = 0$ otherwise. Clearly $x \notin E$ as $\lim_{m \to \infty} |x_{2^m}|^{(1/2^m)} = \epsilon \neq 0$. A little more work shows, that the smooth injective map ϕ , whose differential $\phi'(x)$, $x \in E$ is an isomorphism, has a nowhere dense range, compare also [1].

REFERENCES

- S. Lojasiewicz, Jr., An example of a continuous injective polynomial map with nowhere dense range whose differential at each point is an isomorphism, *Bull. Acad. Polon. Sci.* 24, No. 12 (1976), 1109-1111.
- J. Moser, A new technique for the construction of solutions of nonlinear differential equations, Proc. Nat. Acad. Sci. USA 47 (1961), 1824-1831.
- R. S. HAMILTON, The inverse function theorem of Nash and Moser, Preprint, Cornell Univ., 1974.
- 4. F. SERGERAERT, Un théorème de fonctions implicites sur certains espaces de Fréchet et quelques applications, Ann. Sci. Ecole Norm. Sup. Sér. 4 5 (1972), 599-660.
- 5. H. JACOBOWITZ, Implicit function theorems and isometric imbeddings, Ann. of Math. 95 (1972), 191-225.
- L. HÖRMANDER, The boundary problems of physical geodesy, Arch. Rational Mech. Anal. 62, No. 1 (1976), 1-52.
- E. ZEHNDER, Generalized implicit function theorems with applications to some small divisor problems, I, Comm. Pure Appl. Math. 28 (1975), 91-140.