284 research outputs found

    On vanishing of Kronecker coefficients

    Full text link
    We show that the problem of deciding positivity of Kronecker coefficients is NP-hard. Previously, this problem was conjectured to be in P, just as for the Littlewood-Richardson coefficients. Our result establishes in a formal way that Kronecker coefficients are more difficult than Littlewood-Richardson coefficients, unless P=NP. We also show that there exists a #P-formula for a particular subclass of Kronecker coefficients whose positivity is NP-hard to decide. This is an evidence that, despite the hardness of the positivity problem, there may well exist a positive combinatorial formula for the Kronecker coefficients. Finding such a formula is a major open problem in representation theory and algebraic combinatorics. Finally, we consider the existence of the partition triples (λ,μ,π)(\lambda, \mu, \pi) such that the Kronecker coefficient kμ,πλ=0k^\lambda_{\mu, \pi} = 0 but the Kronecker coefficient klμ,lπlλ>0k^{l \lambda}_{l \mu, l \pi} > 0 for some integer l>1l>1. Such "holes" are of great interest as they witness the failure of the saturation property for the Kronecker coefficients, which is still poorly understood. Using insight from computational complexity theory, we turn our hardness proof into a positive result: We show that not only do there exist many such triples, but they can also be found efficiently. Specifically, we show that, for any 0<ϵ≤10<\epsilon\leq1, there exists 0<a<10<a<1 such that, for all mm, there exist Ω(2ma)\Omega(2^{m^a}) partition triples (λ,μ,μ)(\lambda,\mu,\mu) in the Kronecker cone such that: (a) the Kronecker coefficient kμ,μλk^\lambda_{\mu,\mu} is zero, (b) the height of μ\mu is mm, (c) the height of λ\lambda is ≤mϵ\le m^\epsilon, and (d) ∣λ∣=∣μ∣≤m3|\lambda|=|\mu| \le m^3. The proof of the last result illustrates the effectiveness of the explicit proof strategy of GCT.Comment: 43 pages, 1 figur

    A PSPACE Construction of a Hitting Set for the Closure of Small Algebraic Circuits

    Full text link
    In this paper we study the complexity of constructing a hitting set for the closure of VP, the class of polynomials that can be infinitesimally approximated by polynomials that are computed by polynomial sized algebraic circuits, over the real or complex numbers. Specifically, we show that there is a PSPACE algorithm that given n,s,r in unary outputs a set of n-tuples over the rationals of size poly(n,s,r), with poly(n,s,r) bit complexity, that hits all n-variate polynomials of degree-r that are the limit of size-s algebraic circuits. Previously it was known that a random set of this size is a hitting set, but a construction that is certified to work was only known in EXPSPACE (or EXPH assuming the generalized Riemann hypothesis). As a corollary we get that a host of other algebraic problems such as Noether Normalization Lemma, can also be solved in PSPACE deterministically, where earlier only randomized algorithms and EXPSPACE algorithms (or EXPH assuming the generalized Riemann hypothesis) were known. The proof relies on the new notion of a robust hitting set which is a set of inputs such that any nonzero polynomial that can be computed by a polynomial size algebraic circuit, evaluates to a not too small value on at least one element of the set. Proving the existence of such a robust hitting set is the main technical difficulty in the proof. Our proof uses anti-concentration results for polynomials, basic tools from algebraic geometry and the existential theory of the reals
    • …
    corecore