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THE SUFFICIENCY OF MAXIMUM PRINCIPLE 

by 

S. LOJASIEWICZ (Jr)* 

These results were first presented on C. Imaz seminary where the author has 
been sponcored by CIEA del IPN (Mexico City) during summer 1975. 

SUMMARY. - We consider a nonlinear control system described by differential 
inclusion. We give sufficient conditions for characterization of the boundary trajec­
tories of the system by Pontryaguin-Hamilton equations and for the convexity of 
attainable sets over certain time interval (we give also the best and calculable es­
timations for the lenght of this interval). We apply it to obtain the sufficiency of 
maximum principle for a time-optimal problem. Our result about characterization 
of boundary trajectories generalizes that of [2] . Our assumptions are close to 
these of [3], but different methods used in the proofs permit us to obtain optimal 
results . In [l] one can find another approach to the problem with the assumptions 
which seem to be more restrictive than ours. 

NOTATIONS AND DEFINITIONS.- Let u and v be two vectors in k-dimensio-
nal euclidian space <§ . We denote : uv (without a dot) the scalar product of u 
and v , I v I = (vv) the corresponding norm, [u, v] (]u,v[) the closed (respec­
tively open) interval with the end points u and v , B(u ; R) the closed ball 
with center u and radius R . We call an orientor any nonempty compact convex 
subset of $ . An orientor is called strictly convex, if its boundary does not contain 
any nondegenerate interval and is called R-convex if it is an intersection of closed 
balls of radius R . Whene we will not specify R we will speak about uniformly 
convex of hyperconvex orientors (see [6]). Let A be a strictly convex orientor 

k k in $ (with k^2) and p€ S : pp 0 . We denote v(A, p) the unique point in 
k 

$A such that pv(A, p) = max (pa : a€Aj . Let D be an open subset of #x # 
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A multifunction F from D into <$ is called an orientor field if its values 
are orientors. Let I be an open interval in the real line $ = . A function x 
from I into <$ with graph in D , absolutely continuous on compact subinter-
vals of I is called a trajectory of F if x(t) € F (t, x(t)) for almost every 161. 
Relation x€F( t ,x) is called differential inclusion, sometimes contingens, orien-
tor, or generalised differential equation. Let t € <$ and AcitS be such that 
f t } x Ac^D . For t t we define an accessible (attainable) set as o o 
E(F, t x A,t) = fx(t) : x is a trajectory of F and x(tQ)€A) . A trajectory x 
is called boundary trajectory over an interval J if x(t) € &E(F,tQx A, t) for 
t€ J . The standard properties of these notions are collected for instance in [5]. 

GENERIC CASE. - Let F be an orientor field defined on Sx <$ (with k> 2) 
k k 

by F(t, x) = f (t, x)+ B(0 ; R) where f is a function from <$*$ into $ . F i x 
initial data : t € $ and A a $ an R -convex orientor. o o o 

Hypothesis 1. - The function f(. ,x) is measurable for x6(^ , f ( . ,0 ) is locally 
integrable and there exist L, M> 0 such that 

(1) | f ( t ,x) - f ( t ,y) |<M|x-y | 

(2) |f(t, rx+(l-r)y)-rf(t, x)-(l-r)f(t, y) I < Lr(l-r) (x-y)2 

hold for x,y€c^k, r € [ 0 , l ] and t€<S . 

Remark 1. - Inequality (2) holds iff for each t the function f(t, .) is of class 
Ĉ  and its derivative satisfies Lipschitz condition with the constant 2L . 

Now, we write the Pontryaguin-Hamilton equations (maximum principle) 
for control system x= f(t, x)+u , | u | < R (corresponding to the orientor field F) . 

(3) i(t)=f(t)x(t))+RP(t)|p(t)|-1 w.th x(t ) = y(A ;p(t ))and |p(t )| = 1 _ 
p(t)= -p(t) dxf(t.x(t)) o o o 

Here d denotes the iacobian matrix of f in respect to the second variable, x J r 
Let X(.) be the solution of Ricatti equation : 

2 °° 2 1 
(4) X(t)=R+3MX(t)+2LX(t) with X(tQ)= Rq and put T = J r (R+3MX+2LX ) dX. 

188 



MAXIMUM PRINCIPLE 

Theorem 1. - Assume hypothesis 1. A boundary trajectory of F over interval 
[t , t +T] satisfies (3) with some p and conversely, if (x, p) is a solution o o 
of_(3) then x is a boundary trajectory of F over £t ,t +T] . Moreover 
E(F,t x A , t) are X(t)-convex orient o rsand x(t)=v(E(F,t x A ,t) , p(t)) . o o ~ o o 

GENERAL CASE.- Let A and B be two strictly convex orientors in $ . 
Put s(A, B) = max { | v(A, p)-v(B, p) | : | p | = l) ; then s is a metric (introduced in 
[4]) stronger than Hausdorff metric. For R-convex orientors the both metrics are 
equivalent. Let F be an orientor field defined on <$x<$ (with k^2) . 

Hypothesis 2. - The multifunction F( . ,x) is measurable for x£# , 
dist({ 0} , F(. , 0)) is locally integrable and there exist L, M, 0 such that 
F(t,x) are R-convex, 

(5) s(F(t,x),F(t,y)) ^ Mjx-y| 

(6) s(F(t, rx+(l-r)y), rF(t, x)+(l-r)F(t, y))^ Lr(1-r)(x-y)2 

hold for x, y€ (5k , r€ L0, 1] and t€ $ • 

Now, we can write Pontryaguin-Hamilton equation in the following manner: 

x(t)=v(F(t,x(t)),p(t) 
(7) with x(t )=v(A , p(t )) and |p(t )|=1 . 

p(t)=-p(t)dxv(F(t,x(t))fP(t)) 0 0 0 

Theorem 2 . - Replace hypothesis 1 by 2 and equations (3) by (7). Then the conclu-
sions of theorem 1 are valid. 

Remark 2 . - Basing on the same ideas one can reformulate and prove theorem 2 
for F defined on some open region in <$x<$ and for L, M, R depending on t . 

Remark 3 . - It is not difficult to see that the coefficients 1, 3 and 2 in the equation 
(4) cannot be replaced be smaller ones. Similarly, if we replace the Lipschitz con­
dition for derivative of f (see remark 1) by Holder condition or, if we require 
that F(t,x) are strictly, but not uniformly convex, then one can easily construct 
an orientor field F (which will satisfy so modified hypothesis 2) and a trajectory 
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x (of F) which will satisfy (7) with a suitable p , but x(t)€ intE(F,t x A , t) 
for t > t . 

o 

APPLICATION : TIME-OPTIMAL PROBLEM. 

Let A and A^ be two nonempty disjoint closed subsets of $ . We 
wont to find (for a given initial moment t ) a trajectory x (of a given orientor 
field) such that x(t ) 6 A , x(t,)6 An and t,-t > 0 is minimal. Such a trajec-' v o' o 1 1 1 o J 
tory is called optimal. From theorem 2 we get immediately : 

Corollary. - Assume that F satisfies hypothesis 2. Let (x, p) be a solution 
of_(7) with x(t )€A1 and t j - t ^ T . Suppose that sup{-p(t)a: a € A^<-p(t)x(t) 
for t € ]t , t̂ C ( i .e . the strong transversality condition -see .[l]). Then x is 
optimal. 

Remark 4. - The corollary can be applied in a simple case in which the methods 
of [ l ] does not apply (concavity assumptions are not verified). For instance, take 
k=2 , t = 0 , Aq={(0,0)} , A ={(0,i)] , F(t, (x,y))= (0,x2) + B(0;l). Define 
x(t) = (0,t), p(t) = (0,1) ; then x is optimal by corollary. 

Remark 5. - Consider control system in $ given by (as example 2 in [ l]) : 

(8) x=y, y = (3-xexp(-x ))/2+u(3+xexp(-x ))/2 where u = i l . 

The problem is to minimise the time of transfer from A ={(x,y):y=03 to 
A =̂ { (x, y): y = l} using trajectories of (8). For a given x^€ <$ let z be a t ra-
jectory of (8) defined by y(t) = 3t , x(t) = (3(2) t + x . Define an autonomous orien-

tor field F b y : F (x, y) = (y, (3-x exp(-x )+ B(0 ; (3+ x exp(-x ))/2). By corol­
lary used with F and z as above, t = 0, t̂  = l /3 , p(t) = (0, 1) we get the opti­
mal ly of z for the problem of transfer {(0,Xq)} to A^ and hence, for the 
original problem. The optimality of z can be obtained using results of Cl] too. 

PROOF ; Proof of theorem 1. - Fi rs t , we are going to specify some particular 
properties of hyperconvex sets which we will use in our proofs without explicity 
refer to i t s . Let A be a strictly convex orientor, then v(A, ,) is continuous. 
If A is R-convex, then Ac B (v(A, p)-Rp | p | _1 ; R) . A is R-convex iff v(A,.) 
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satisfies on oB(0,l) the Lipschitz condition with the constant R . For |u-v|^2R 
we denote S(u, v ; R) the intersection of all closed balls of radius R contai­
ning points u and v . A nonempty, compact set A is R-convex iff 
|u-v | ^ 2R and S(u, v ; R)cz A for all u and v in A . Put 2a = v-u , 
2b = v+u and denote Q(u, v) = {z € '• a(z-u)> 0 and a(z-v)<0} . Each z€Q(u,v) 
has the unique orthogonal decomposition : z = b+xa+y where x€# , |x | < 1 , 
y€ £k , ya = 0 . We denote Y(u, v ; z) = |y | ((l-x2)a2)_1 and for c^ 0 : 
P(u, v ; c) = [z € Q (u, v) : y(u, v ; z)< c} U [u, v} . If y /• 0 , y(u, v ; z) has the fol­
lowing geometric interpretation. Let A he the parabola passing through the 
points u, v, z and having as its axis of symmetry the line (lying in the plane 
(u, v, z)) perpendicular to a and passing through the point b . By a suitable 
isometric change of coordinates we can uniquely describe A by an equation of 
the form Y = aX with a > 0 ; then a = Y (u, v ; z) . For | u-v | < 2R we have : 
P(u, v ; A" R)c S(U, v ; R) . A nonempty, compact set A is R-convex iff 
P(u, v ; i R)c: A for all u and v in A . Let be e>0 , and suppose moreover 
that A is connected. Then A is R-convex iff P(u, v ; t R)c A for all u€^A 
and v€$A satisfying |u-v |< e . Now, let u and v be two trajectories of 
F such that u(t) ^ v(t) for t in some interval ]a,(3[ . Define the open domain: 
D = {(t,z) : t€]<x,pC and z€ Q(u(t), v(t))} . Put w(t, z) = (1-x2) a2y+2xy2a for 
(t, z) € D . We define an orientor field G on D by G(t, z) = { p € F(t, z) : 
(p-q) w(t, z)< 0 for q€F(t ,z)} . Geometrically, w(t, z) is a vector perpendi­
cular to parabola A at z . 

Lemma 1. - Through each point of D passes a full trajectory of G ; denote it 
by z(.) and put Y(t) = Y(u(t), v(t) ; z(t)) . Then for a. e. t such that Y(t) ^ 0 
we have : 

(9) Y(t)< L+(3M-r2L|a(t)|)Y(t)+(2R + 4M|a(t)|)Y(t)2 . 

Proof : The existence of z(. ) is a classical fact if we remark that G is upper 
semicontinuous in space variable z . We fix a point t , such that u(t), v(t), z(t) 
exist and Y(t)^ 0 . In what follows we suppress dependence on the variable t 
in order to make our notation simpler. If we calculate the logarithmic derivative 
of Y we get (using ya= 0) : 

(10) Y/Y-(y+ia)c+2xya((l-x2)a2)"1- 2aa(a2)"1 where c= y(y2)'1+2xa((l-x2)a2)"1 . 
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We have : z - f(z)-Rc( |c | ) * . Let n and m be in B(0 ; 1) such that 
v= f(v)+Rn and u= f(u)+Rm . We can write (10) in the following form : 

(11) Y/Y= c[f(z)^(f(b+a)+f(b-a))-|(f(b+a)-f(b+a))]-f Cxy((l-x2)a2)"1-a(a2)"1] . 

. (f(b+a)-f(b-a))+R[-!ci-|(n+m+x(n-m)) + (xy((l-xZ)a2)"1-a(a2)"1)(n-m)] . 

From (2) we get : |f (b+xa)-i(f (b+a)+f ( b - a ) ) - | (f (b+a)-f(b-a)) |<L(l-x2)a2 . Using 
this and (1) we can easily estimate, in (11), the part which does not contain R 
by 3M+2L|a|+4M|a|Y+L/Y . To finish our proof we have to estimate in (11) the 
part which contains R , by 2RY . Obviously, it is sufficient to prove that : 

(12) |a/a2-xy((l-x2)a2)_1- f (1-x) | + |xy((l-x2)a2)-1- | (1+x) |« 2Y + |c I . 

2 2 1 2 We denote e = 2y (a ) . Multiplying (12) by 2(l-x ) |y | we get an equivalent 
inequality : 

(13) C(l+x)2(l-x2)2+2(l+x)(l+x3)e+x2e2]*+[(l-x)2(l-x2)2+2(l-x)(l-x3)e+x2e2]^ < 

< 2e+2[(l-x2)2- 2x2e]^ . 

2 2 2 2 3 2 2 Let us denote : s = 1-x and g(x) = (1+x) (1-x ) + 2(l+x)(l+x )e+x e . We square 
both sides of (13) and after arranging and dividing by 2 we get an equivalent ine­
quality : 

h 7 7 7 ~ 
(14) Cg(x)g(-x)] < e +s(e-sr+4e(s +2(l-s)ef . 

2 i 
We square both sides of (14) and in the formula we replace (s +2(1-s)e) by s . 2 2 3 2 After rearranging and dividing by 4e we finally get 2e(s +s-3)^s s + se 
which is equivalent to (11) and trivially satisfied ; so the proof of lemma 1 is com­
plete . 

Lemma 2. - Put E(t)= E(F,tQx A^.t) ; then E(t) are hyperconvex orientors  
for t close to t . 

Proof : It is well known that E(t) are nonempty, compact, connected and depend 
continuously on t . Let be e>0 and a € E(t +e), b €E(t +e), a ^ b . There } o o o o o 
exist $ and t , trajectories of F such that 0(t )» • (t^)^ and 
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0(tQ+ £ )= , ^ (tQ+ £ )= bQ . We reverse time, i . e . we put t = tQ+ e + t , x(F)= x(t) , 
F(t, x)= -F(t,x) . Then x(t) € F(t, x(t)) is equivalent to x(t) € F(F, x(t)) . We put : 
u(t)=0(t), v(t) = • (t) , 3= max [T€]0, e] : u(F) ^ v(t) for F€ Co, T C } and choose 
a< 0 large enough so u(t) ^ v(F) for t€ ]a, 0] . From lemma 1 with F, u, v, 
a,P , we get the existence of eo>0 such that Y (0) < l/4 Rq implie s Y(T)<l/2R0 
for t€[0,£ ] and e£[0,e ] (the choice of e depends only on the constants o o o 
L, M, R and R ) . Hence through each point of { 0} x P(u(0), v(0) ; l/4 RQ) there 
passes z , a trajectory of F , such that z(e)€ (we set z to be the z 
from lemma 1 and if necessary, we extend z using u or v ). Hence 
P(a ,b , l /4R)crE(t +e) . Therefore, E(t +e) is 2R -convex which completes 0 0 0 0 o o ^ 

proof. Let ]tQ,to+rC be the maximal open interval such that E(t) are hyper-
convex on it. 

Lemma 3 . - If R> 0 , then E(t) has interior points and the boundary of E(t) 
is C1-smooth for t€ ]t , t + r ] . — Q Q 

Proof : Let G be an orientor field defined by G(t, z) = g(t, z)+ B(0 ; R) with 
g satisfying the hypothesis 1. Let x and y be the solutions of z = g(t, z) 
with x(0) = and y(0) = y^ , then we easily obtain (using standard differential 
inequality methods) the following formula : 

(15) E(G, (0, x ), t)cB(x(t); RM_1(exp(MT)-l)) 

(16) B(y(t); RM_1(l-exp(-Mt))c E(G, (0, y ), t) 

(17) |x(t)-y(t)+yO-Xo|^|xo-yo|(exp(Mt)-l) . 

To prove our lemma it is sufficient to prove that E(t) has unique outward nor­
mal at each boundary point. Suppose otherwise ; then there exists t, € ]t , t +r] , 

x ^ E f t ^ , m€oB(0;l) , n€^B(0;l), n^m such that Xq= vfE^) , n)= v(E(t ), m) . 
Put C = B(Xq;1)\ {x€£k : n(x-XQ)< 0 and m(x-XQ)<0} .Take 9 satisfying 
(1+mn) | m + n | _ 1 < e < l , then B(x ; Rt(l+Mt)) c U B(y ; 9 Rt) for t > 0 suffi-

ciently small. Hence using (17) we get for small t > 0 . 

B(x(t) ; Rt(l-fMt)) d U B(y(t), Rt(l-Mt)) so from (15) and (16) we obtain for small 
y €C 

t > 0 : 
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(18) E(G, (0, x ), t)<=E(G, foJxCt). 

Let z be a trajectory of F such that z(tQ)€ and z(t^) = . From (18) 
with G(t,x) = F(t^-t,x) we get that there exists "z a trajectory of G satis­
fying "z(0)€ C and "z(tj-t ) = z(^2^ ^or some c-*-ose to ^ ' ^ence 
z(0)6E(t^) which contradicts CHE(t^)=0 and so the proof is complete. 

For t € ] t ,t +r] and z £$E(t) we denote n(E(t), z) the unique 
(by lemma 3) outward normal to E(t) at the point z . Let z be a boundary 
trajectory of F over CtQ, t + r] . By Pontryaguin's maximum principle z 
satisfies (3) with some p and moreover, z(t)€oE(t) for t € Ct ,t + r] . 

o o 

Lemma 4. - If R> 0 , then n(E(t), z(t)) - p(t) | p(t) I"1 for t € ] t , t + r ] . 
Q Q 

Proof : It is sufficient to prove our equality for t ^ l t ^ t ^ + r C . Suppose other­
wise, then there exists a boundary trajectorie z and t̂  such that 
n = n(E(t1), z(tx))^ p(tx) I p ^ ) ! " 1 ^ m . Put G(t,x) = F ^ + t . x ) , xQ=z(t1) . Then 
using (17) and (3) we get for t€[0, tQ+ r - t ^ 

(19) lyQ-y(t)-(x + Rtm-(t + t)z) |< ly0"x0 I (exp(Mt)-l) + RM"1(exp(Mt)-tMt)+iRMt2 

Let 9 be as in the proof of lemma 3. For £>0 we put : 

D£= [z€<Sk: |(z-xQ)-n(z-x )n |<9 |z -xo | and n(xQ - z )€ [0, e ] } 

then for t sufficiently small we get 

(20) x U t m c U B(y ;0Rt) . 
o wo y €D 

O E 
From lemma 3 we get D^crE(t^) for small e . Hence using (19) and (20) we 
obtain z(t,+ t)€ 11, xB(y(t) ; Rt(l-Mt)) for small t . Therefore from (16) we 

1 
get z(tj+ t) € int E(t^+ t) for t > 0 which contradicts the fact that z is a boun­
dary trajectory, so the proof of lemma 4 is complete. 

Lemma 5. - Suppose that (z, p) is a solution of (3). Then z is a boundary t ra­
jectory of F over CtQ, tQ+ r] . 

Proof : If R= 0 lemma is trivial, so suppose R> 0 . Take t€] t , t + r ] .  r r o o 
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We define h , a map from ô B(0 ; 1) into E(t) as follows : bB(0;l)9po-+ h(pQ) = 

= z(t)€E(t) where (z, p) is a solution of (3) with p(t )= Pq . The function h 

is well defined because (3) has uniqueness property as Lipschitzian equation. 

Moreover, from lemma 4 we get that h is injective on h \ôE(t)) . Obviously 

h is continuous and ÔE(t) c h(ÔB(0 ;1)) by maximum principle . Hence h ^ is 

an homeomorphism from bE(t) onto h \ôE(t)), but &E(t) is homeomorphic 

to ÔB(0;1), SO h induces a continuous injection from bB(0;l) into bB(0;l) 

such an injection must be onto, hence h ^ (' b E(t)) = b E(0; 1) and h is a homeo­

morphism from bB(0;l) onto bE(t) which complets proof of lemma 5. 

Lemma 6. - We have T< r and E(t) are X(t)-convex orientors for 

t€ Ct , t +T[ . 
o o 

Proof : Take s € ] t ,t +T[ with s< t + r . To each x£bE(s) we associate  o o k o 
a map g_̂ : I t^t^+TL -» <$ defined by gxW ~ z(t) where (z, p) is a solution 

of (3) with z(s)=x and with p(s) | p(s) = n(E(s), x) if R> 0 . Then for each 

e> 0 there exists 6(e)>0 such that |x -y |^6(e) implies |g (t)-g (t) | ^ e 
for t€] t , s] . Moreover, x -> g (t) is injective for t£] t , s] , hence for 

t€] t , t,[ with some t , € ] s , t +T[ . We have just used lemmas 3, 4 and the re -o 1 1 o J 
gularity of (3). 

Now, let Y be a solution of Y= L+(3M+2Le )Y + (2R+4Me)Y2 with 

Y(0)>0 . Take X> 0 . We can choose e> 0 such small that Y(0)(2X(s)+X)< 1 

implies 2R Y(s-t )<1 . Let a and b belong to b E(s) and a / b , o o o o b 7 o o 
| ao-bo |^5(e) . We reverse time : Y- s - t , F(t, x) = -F(t, x) and we put a = s -t^ , 

3 = s-t , u(t) = g (t) , v(t) = g (t) . From lemma 1 used with E, u, v, a , 3 we o aQ bQ 
obtain that Y(0) (2X(s)+X)^ 1 implies 2RQY(s-to)<l (because Y(0)<Y(0) 

implies Y(t)^ Y(t) for t^ 0) . Hence (by similar argument as in the proof of 

lemma 2) we get that E(s) is (X(s)+X)-convex and therefore E(s) is X(s)-

convex (because X can be arbitrary small). We have also T^ r . Otherwise, 

we can take s=t +r and applying lemma 2 with sxE(s) as initial data we get 

the hyperconvexity of E(t) for t close to t + r which cannot occur because 

r is maximal. So the proof of lemma 6 is complete. 

Theorem 1 results immediately from maximum principle and lemmas 

4, 5 and 6. 
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Proof of Theorem 2 : Each boundary trajectory of F over Ct , t + T ] satis­
fies (7) with some p by maximum principle. Conversely, to each solution 
(x, p) of (7) we associate an orientor field F F defined by F (t,x)=f (t, x) + 

Y P 1 P P 
+ B(0;R) where f (t, x)= v(F(t, x), p(t) |p(t) |~ )-Rp(t) |p(t) |" . Denote Ep(t) = 
= E(F ,t xA ,t) and E(t) = E(E,t x A , t) . Obviously E(t)c E (t) and (x, p) p o o o o p 
satisfies (3) with ^=*p ' therefore by theorem 1 x is boundary trajectory of 
F (hence of F) and x(t) = v(E^(t), p(t))= v(E(t), p(t) . So, we have only to prove 

that E(t) are X(t)-convex orientors. Take t]_^^t0»t0+T^ • We clame '• if 
intE(t..)^0 then intE(t1 ) - int HE (t ) where (x, q) are all possible solutions 1 1 q q 1 
of (7). Hence E(t ) = D E (t ) which completes the proof for this case, because 

1 q 9L 1 
E ( t) are X(t1)-convex orientors. Otherwise there exists x ^oE(t1)Hint fl E (t ) q l l l l q q l 
and consequently there exists x a boundary trajectory of F (over CtQ,t^]) 
with x(t^) = x^ . Therefore x satisfies (7) with some p and hence (x, p) 
satisfies (3) with f = f . By theorem 1 , x.,€oE (t..) which contradicts V ' P 1 p 1 
x,€intn E (t ) . In the case : intE(tJ= 0 we have intE(t) = 0 for t € Ct , t. ] , 1 q q 1 1 o 1 

also Aq is reduced to a single point, say and each trajectory x of F 
with x(t ) = x is boundary over [t^, t^] . Moreover, we are going to prove that 
F(t,x(t)) is reduced to a single point for a .e . t€[tQ,t^] . Consequently E(t^) 
will be reduced to a single point which will complete the proof of theorem 2, be­
cause a single point is 0-convex and hence X(t^)-convex orientor. Suppose other­
wise. For r>0 we put C = { (t, x)€ <$ x : t€ ] t ,tn[ and |x -x( t ) |<r} . Fix 
n€oB(0;l) and put w(t, x) = £ (v(F(t, x), n)+v(F(t, x), -n)). We can choose r and 
e>0 such small that there exists Aer]t ,t-C with positive measure, such that 
if we define G an orientor field on C by : G(t, x) = w(t, x)+ B(0; e) for t€A 
and G(t,x)={w(t,x)} for t ^ A , t h e n G(t, x)cr F(t, x) and G(t, x)cr int F(t, x) 
for t€A . We define y , a trajectory of F by : y(t) = x(t) for t ^ t^ where 
t^ is a density point of A and y(t) = z(t) for t ^ t^ where z is a t ra ­
jectory of G with z(t^)=x(t^) . Then y(t)€ int F(t, y(t)) over a set of positive 
measure, but this cannot occur because y is a boundary trajectory of F in 
some neighborhood of t , so the proof is complete. 
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