11 research outputs found

    Numerical studies of shear-thinning droplet formation in a microfluidic T-junction using two-phase level-set method

    Get PDF
    A conservative level-set method (LSM) embedded in a computational fluid dynamics (CFD) simulation provides a useful approach for the studying the physics and underlying mechanism in two-phase flow. Detailed two-dimensional (2D) computational microfluidics flow simulations have been carried out to examine systematically the influence of different controlling parameters such as flow rates, viscosities, surface wettability, and interfacial tensions between two immiscible fluids on the non-Newtonian shear-thinning microdroplets generation process. For the two-phase flow system that neglects the Marangoni effect, the breakup process of shear-thinning microdroplets in cross-flowing immiscible liquids in a microfluidic device with a T-shaped geometry was predicted. Data for the rheological and physical properties of fluids obeying Carreau-Yasuda stress model were empirically obtained to support the computational work. The simulation results show that the relevant control parameters mentioned above have a strong impact on the size of shear-thinning droplets generated. Present computational studies on the role and relative importance of controlling parameters can be established as a conceptual framework of the non-Newtonian droplet generation process and relevant phenomena for future studies

    Examining the Effect of Flow Rate Ratio on Droplet Generation and Regime Transition in a Microfluidic T-Junction at Constant Capillary Numbers

    No full text
    The focus of this work is to examine the effect of flow rate ratio (quotient of the dispersed phase flow rate over the continuous phase flow rate) on a regime transition from squeezing to dripping at constant capillary numbers. The effect of the flow rate ratio on the volume of droplets generated in a microfluidic T-junction is discussed, and a new scaling law to estimate their volume is proposed. Existing work on a regime transition reported by several researchers focuses on the effect of the capillary number on regime transition, and the results that are presented in this paper advance the current understanding by indicating that the flow rate ratio is another parameter that dictates regime transition. In this paper, the transition between squeezing and dripping regimes is reported at constant capillary numbers, with a transition region identified between squeezing and dripping regimes. Dripping is observed at lower flow rate ratios and squeezing at higher flow rate ratios, with a transition region between the two regimes at flow rate ratios between 1 and 2. This is presented in a flow regime map that is constructed based on the observed mechanism. A scaling model is proposed to characterise droplet volume in terms of flow rate ratio and capillary number. The effect of flow rate ratio on the non-dimensional droplet volume is presented, and lastly, the droplet volume is expressed in terms of a range of parameters, such as the viscosity ratio between the dispersed and the continuous phase, capillary number, and the geometrical characteristics of the channels

    Willingness to Pay for Urban and Suburban Green

    No full text
    Peri-urban and urban green are considered among the basic priorities of the local government’s regional policy agenda, in line with the principles of spatial planning. This agenda is promoted at both the national and European levels through a variety of technical and institutional measures. Green spaces in urban and suburban areas are directly linked to the quality of life of urban residents and their environment. In this context, the purpose of this study is to investigate and identify the characteristics and factors that influence the residents of a small Greek city in terms of the value they attach to urban and suburban green spaces. These factors are identified through the residents’ willingness to pay (WTP) using the contingent valuation method (CVM). In general, the analysis aims to document the value of environmental economic methods as a tool in the management of natural heritage. According to the research, income and knowledge of environmental issues (global and local) as well as the benefits of green spaces (urban and suburban) are the key factors that drive residents to place a higher value on them. Future work may explore whether or how the COVID-19 pandemic affected city residents’ willingness to pay for green spaces

    Willingness to Pay for Urban and Suburban Green

    No full text
    Peri-urban and urban green are considered among the basic priorities of the local government’s regional policy agenda, in line with the principles of spatial planning. This agenda is promoted at both the national and European levels through a variety of technical and institutional measures. Green spaces in urban and suburban areas are directly linked to the quality of life of urban residents and their environment. In this context, the purpose of this study is to investigate and identify the characteristics and factors that influence the residents of a small Greek city in terms of the value they attach to urban and suburban green spaces. These factors are identified through the residents’ willingness to pay (WTP) using the contingent valuation method (CVM). In general, the analysis aims to document the value of environmental economic methods as a tool in the management of natural heritage. According to the research, income and knowledge of environmental issues (global and local) as well as the benefits of green spaces (urban and suburban) are the key factors that drive residents to place a higher value on them. Future work may explore whether or how the COVID-19 pandemic affected city residents’ willingness to pay for green spaces

    Effect of Fluid Properties on Droplet Generation in a Microfluidic T-Junction

    No full text
    Over the last decade, significant work has been performed in an attempt to quantify the effect of different parameters such as flowrate, geometrical and fluid characteristics on the droplet break up mechanism in microfluidic T-Junctions. This demand is dictated by the need of tight control of the size and dispersity of the droplets generated in such geometries. Even though several researchers have investigated the effect of viscosity ratio on both the droplet break up mechanism as well as on the regime transition, fluid properties have not been included in most scaling laws. It is therefore evident that the contribution of fluid properties has not been quantified thoroughly. In the present work, the effect of fluid properties on the volume of droplets generated in a microfluidic T-junction is investigated. The main aim of this work is to examine the influence of viscosity of both the dispersed and continuous phase as well as the effect of interfacial tension on the size of droplet generated along with the break up mechanism. Three different oils have been utilised as continuous phase in this work to enable investigation of the effect of viscosity of the continuous phase with experiments performed at constant Capillary numbers. Various glycerol weight percentages have been employed to vary the viscosity of the dispersed phase fluid (water). Lastly, the effect of interfacial tension has been explored using two of the oils at constant μcUc (viscous force term). High speed imaging has been utilised to visualise and measure the volume of the resulting droplets. The viscosity ratio (viscosity of dispersed phase over viscosity of continuous phase) between the two phases appears to affect the droplet generation mechanism, especially for the highest viscosity ratio employed (mineral oil-water system) where the system behaves in a noticeably different way. Influence of interfacial tension is also noticeable even though less evident. In terms of the effect of viscosity of dispersed phase on the droplet generation a small difference on the volume of the droplets generated in olive oil glycerol systems is also reported. In an attempt to enumerate the effect of fluid properties on the droplet generation mechanism in a microfluidic T-junction, this paper will present supporting evidence in detail on the above and a comparison of the findings with the existing theories.</jats:p

    Characterizing droplet breakup rates of shear-thinning dispersed phase in microreactors

    Get PDF
    A two-phase flow predictive model with the integration of conservative level-set method (LSM) and Carreau-Yasuda constitutive equation was developed herein. The LSM was chosen as a potential interface capturing scheme for elucidating the interfacial phenomena including insight into the mechanism of shear-thinning droplets. In present paper, the dynamics of shear-dependent droplet emergence, growth, detachment and translocation in a Newtonian microsystem were examined via computational fluid dynamics (CFD) analysis. Dilute sodium carboxymethylcellulose (Na-CMC) solution was treated as dispersed phase (70 mPa.s < ηo  C*˜0.40 wt%). This striking behaviour highlights the importance of rheological effects in flows with a shear-dependent fluid under various flow conditions. The viscous effect of Na-CMC fluids substantially affects the manipulation over the droplet pinch-off time and production rate. Thus, it necessitate the control of the shear rate by adjusting the flow conditions and aspect ratio of microchannels

    Numerical Simulation of the Effect of Rheological Parameters on Shear-Thinning Droplet Formation

    No full text
    Immiscible non-Newtonian-Newtonian fluid systems in microfluidics constitute an essential study as non-Newtonian fluids consistently met in medical and biological systems. Although a large number of experimental investigations have been reported in this area, attempts to develop predictive models appear to be limited. This paper is an attempt to incorporate a non-Newtonian stress model together with front-tracking scheme used in computational fluid dynamics. A conservative two-phase level set method (LSM) was applied for capturing the droplet breakup dynamics and relevant hydrodynamics of shear-thinning carboxymethylcellulose (CMC) droplets. Our droplets comprise of 0.02wt% to 1.2wt% CMC solutions in a Newtonian continuous fluids system (olive oil) employed in a T-shaped microfluidic cell. A Carreau-Yasuda viscosity model for shear-thinning CMC droplets has been implemented. This shear-dependent constitutive model fitted well to our steady state non-linear shear measurements for polymeric CMC solutions, with asymptotic viscosities at zero and infinite shear rates, and with different degrees of shear thinning (η0/η∞) in steady state. The particular focus of this study was to systematically undergo parametric studies on the influence of rheological parameters of the specified model such as zero (η0) and infinite shear viscosity (η∞), and relaxation time (λ) on the droplet formation processes. The level set simulation predicted that the droplet diameter increases with increasing η0/η∞. The effect of η0/η∞ has been found to have more prominent impact on droplet diameter for higher CMC concentrations. The variation in droplet diameter becomes less significant at the higher degrees of shear-thinning for all concentrations of CMC dispersed solutions. In the limit of zero shear-thinning effect, the droplet diameter increases when the dispersed phase viscosity decreases. Additionally, the effect of λ on the droplet diameter is also discussed. The reciprocal of the characteristic relaxation time (1/λ) corresponds to a critical shear rate that indicates the onset shear rate for shear-thinning. As λ increases, the numerical studies clearly reveal that the droplet diameter is increasing until it reaches a plateau for larger values of λ. The influence of λ leads to a more significant impact on droplet diameter for higher CMC concentration. These findings will ultimately help in understanding the sensitivity of rheological parameters to the microdroplet formation.</jats:p

    A Novel Cis-Acting RNA Structural Element Embedded in the Core Coding Region of the Hepatitis C Virus Genome Directs Internal Translation Initiation of the Overlapping Core+1 ORF

    No full text
    Hepatitis C virus (HCV) genome translation is initiated via an internal ribosome entry site (IRES) embedded in the 5&prime;-untranslated region (5&prime;UTR). We have earlier shown that the conserved RNA stem-loops (SL) SL47 and SL87 of the HCV core-encoding region are important for viral genome translation in cell culture and in vivo. Moreover, we have reported that an open reading frame overlapping the core gene in the +1 frame (core+1 ORF) encodes alternative translation products, including a protein initiated at the internal AUG codons 85/87 of this frame (nt 597&ndash;599 and 603&ndash;605), downstream of SL87, which is designated core+1/Short (core+1/S). Here, we provide evidence for SL47 and SL87 possessing a novel cis-acting element that directs the internal translation initiation of core+1/S. Firstly, using a bicistronic dual luciferase reporter system and RNA-transfection experiments, we found that nucleotides 344&ndash;596 of the HCV genotype-1a and -2a genomes support translation initiation at the core+1 frame AUG codons 85/87, when present in the sense but not the opposite orientation. Secondly, site-directed mutagenesis combined with an analysis of ribosome&ndash;HCV RNA association elucidated that SL47 and SL87 are essential for this alternative translation mechanism. Finally, experiments using cells transfected with JFH1 replicons or infected with virus-like particles showed that core+1/S expression is independent from the 5&prime;UTR IRES and does not utilize the polyprotein initiation codon, but it requires intact SL47 and SL87 structures. Thus, SL47 and SL87, apart from their role in viral polyprotein translation, are necessary elements for mediating the internal translation initiation of the alternative core+1/S ORF

    Assessing the performance of electrospun nanofabrics as potential interlayer reinforcement materials for fiber-reinforced polymers

    No full text
    Multiscale-reinforced polymers offer enhanced functionality due to the three different scales that are incorporated; microfiber, nanofiber, and nanoparticle. This work aims to investigate the applicability of different polymer-based nanofabrics, fabricated via electrospinning as reinforcement interlayers for multilayer-fiber-reinforced polymer composites. Three different polymers are examined; polyamide 6, polyacrylonitrile, and polyvinylidene fluoride, both plain and doped with multiwalled carbon nanotubes (MWCNTs). The effect of nanotube concentration on the properties of the resulting nanofabrics is also examined. Nine different nanofabric systems are prepared. The stress–strain behavior of the different nanofabric systems, which are eventually used as reinforcement interlayers, is investigated to assess the enhancement of the mechanical properties and to evaluate their potential as interlayer reinforcements. Scanning electron microscopy is employed to visualize the morphology and microstructure of the electrospun nanofabrics. The thermal behavior of the nanofabrics is investigated via differential scanning calorimetry to elucidate the glass and melting point of the nanofabrics, which can be used to identify optimum processing parameters at composite level. Introduction of MWCNTs appears to augment the mechanical response of the polymer nanofabrics. Examination of the mechanical performance of these interlayer reinforcements after heat treatment above the glass transition temperature reveals that morphological and microstructural changes can promote further enhancement of the mechanical response

    Evaluation of a thermal consolidation process for the production of enhanced technical fabrics

    No full text
    Fiber reinforced composites are increasingly used in high value applications. A novel technology (NanoWeld® ) enhancing the structural integrity of the interlayer has demonstrated promising results; however, manufacturing issues related to scalability need to be overcome. The developed technology relies on consolidating thermoplastic nanofiber nonwoven veils onto technical dry fabrics through roll-to-roll ultrasonic welding. The enhanced technical dry fabrics can be further processed as any other technical fabrics for the composites industry. An alternative solution for consolidation is proposed here, based on a thermo-compressive approach to address the scala-bility issue. A finite element model has been employed to simulate the operating conditions and provide information for optimization of the process. Its results demonstrate that consolidation is achieved rapidly, indicating that the production rate could be accelerated. The quality of enhanced technical dry fabrics produced using the proposed consolidation assembly has been evaluated using scanning electron microscopy as well as mechanical testing of fiber reinforced composites. The mechanical response of such manufactured composites has been compared against benchmark Nan-oWeld® composites, demonstrating superior performance
    corecore