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ABSTRACT 12 

A two-phase flow predictive model with the integration of conservative level-set 13 

method (LSM) and Carreau-Yasuda constitutive equation was developed herein. The 14 

LSM was chosen as a potential interface capturing scheme for elucidating the 15 

interfacial phenomena including insight into the mechanism of shear-thinning 16 

droplets. In present paper, the dynamics of shear-dependent droplet emergence, 17 

growth, detachment and translocation in a Newtonian microsystem were examined 18 

via computational fluid dynamics (CFD) analysis. Dilute sodium 19 

carboxymethylcellulose (Na-CMC) solution was treated as dispersed phase (70 20 

mPa.s <   <10.2644 Pa.s) whereas the olive oil (68 mPa.s) was designated as 21 

continuous phase. Visualisation experiments were carried out and these laboratory 22 

data were used to validate the simulation results. Detailed 2D simulations were 23 

presented to examine systematically the impact of fluid properties on the droplet 24 

breakup rate at predefined flow rate ratio, Q of 0.05. The results yielded an inflection 25 

point in the dependence of droplet breakup rate on Na-CMC concentration was 26 

found in between the dilute and semi-dilute concentration regimes. This inflection 27 

point displays a non-monotonic profile which is mainly caused by the considerable 28 

viscosity effect of Na-CMC polymer when its concentration increases above a critical 29 
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value (C > C*~0.40 wt%). This striking behaviour highlights the importance of 30 

rheological effects in flows with a shear-dependent fluid under various flow 31 

conditions. The viscous effect of Na-CMC fluids substantially affects the manipulation 32 

over the droplet pinch-off time and production rate. Thus, it necessitate the control of 33 

the shear rate by adjusting the flow conditions and aspect ratio of microchannels. 34 

Keywords: non-Newtonian; microfluidics; level-set; droplet breakup; T-junction 35 

geometry. 36 

 37 

1. Introduction 38 

Two-phase flow is a term covering the motion of two different interacting fluids that 39 

are in different phases such as liquid-liquid and liquid-vapor. In two-phase flow 40 

microfluidics, an emulsion contains a mixture of two immiscible liquids as one phase 41 

being dispersed throughout the other phase in small droplets. Most common 42 

emulsions include direct emulsions, oil droplets in an immiscible and continuous 43 

water phase, or inverted emulsions, water droplets in an immiscible and continuous 44 

oil phase. Emulsions are typically made by fissioning droplets with shear or impact 45 

and the resulting suspensions possess a wide size distribution of drop sizes 46 

(Umbanhowar, Prasad, & Weitz, 2000). At low enough Reynolds (Re) number, a 47 

laminar flow regime is assumed and these droplets are translocate through 48 

microfluidic structures having dimensions most easily measured in microns. The 49 

manipulation of droplets in a confined microfluidic system has been highlighted as 50 

one of the earliest tools used in the fields of biomedical sciences. The characteristics 51 

of droplets become reliable tool for performing biological operations such as analyte 52 

encapsulation, sampling, metering, dilution, reaction and detection (Huebner et al., 53 

2008; Niu & deMello, 2012; Tawfik & Griffiths, 1998; Theberge Ashleigh  et al., 2010). 54 

Droplets can be generated via a number of methods in microfluidic devices, including 55 

breakup in co-flowing stream(Cramer, Fischer, & Windhab, 2004; Moon, Cheong, & 56 

Choi, 2014; Utada, Fernandez-Nieves, Stone, & Weitz, 2007), breakup in cross-57 

flowing stream (Garstecki, Fuerstman, Stone, & Whitesides, 2006; Qiu, Silva, 58 

Tonkovich, & Arora, 2010; Xu, Li, Tan, & Luo, 2008), hydrodynamics flow-focusing 59 

(Anna & Mayer, 2006; Peng, Yang, Guo, Liu, & Zhao, 2011), and microchannel 60 



      

emulsification (Kobayashi, Nakajima, & Mukataka, 2003; van der Zwan, Schroën, & 61 

Boom, 2009; Yobas, Martens, Ong, & Ranganathan, 2006). Cross-flowing in a T-62 

junction is one of the easiest microfluidic methods of generating highly 63 

monodispersed droplets.  The formation of droplet at a T-junction, at which viscous 64 

shear-stresses induced by continuous stream of the horizontal channel overcome 65 

surface tension at the liquid-liquid interface and pull off droplets of the dispersed 66 

phase from the vertical channel. This is mainly due to the instabilities of free surface 67 

between the phases are sufficiently large. Thus, the size and frequency of the 68 

droplets can be accurately manipulated by modifying the relative pressures of the 69 

two immiscible liquid in order to enable the production of a wide range of vesicle 70 

shapes and patterns (Thorsen, Roberts, Arnold, & Quake, 2001). Besides, opposed 71 

flowing (Shui, van den Berg, & Eijkel, 2009) and perpendicular flowing (Leshansky & 72 

Pismen, 2009) are another operation modes producing monodispersed droplet 73 

formation in a T-junction microchannel. 74 

A numerical modelling approach to the multiphase flow problem provides a detailed 75 

and comprehensive description of the formation of microdroplets since a number of 76 

statistical information can be extracted from a predictive model. As the dimension of 77 

the interest gets smaller, the surface-based interfacial tension and the viscosity 78 

become more significant in controlling critical flow behavior of multiphase flow in 79 

microscale, especially when handling fluids that have a complex microstructure 80 

leading to non-Newtonian phenomena.  Additionally, the non-Newtonian flow curve 81 

presents a nonlinear relationship between shear-stress and the rate of deformation. 82 

For instance, previous research efforts have been much devoted to the experimental 83 

analysis of the dynamics and relevant hydrodynamics of viscoelastic droplets 84 

(Arratia, Cramer, Gollub, & Durian, 2009; Husny & Cooper-White, 2006; Steinhaus, 85 

Shen, & Sureshkumar, 2007) and few studies have focused on other shear-86 

dependent fluids such as purely viscous fluids and time-dependent fluids (Chhabra & 87 

Richardson, 2008). Hitherto, there have been far fewer attempts to develop a 88 

predictive numerical model for the relevant physics of non-Newtonian droplets 89 

generation in a Newtonian bulk phases. However, there is no unique constitutive 90 

model that can represent the different characteristic behaviours of non-Newtonian 91 

fluids. 92 



      

In microfluidics, the geometry of droplet interface is usually complex and it can 93 

undergo large deformations or even topology changes such as fission and fusion in 94 

microchannel. There are two approaches, namely interface tracking (Hou, 95 

Lowengrub, & Shelley, 2001; Tryggvason et al., 2001) and interface capturing 96 

(Bonometti & Magnaudet, 2007), to represent the flow problem of droplet interface 97 

evolution or moving boundaries either explicitly or implicitly to the incompressible 98 

Navier-Stokes equation discretised on a fixed grid. Interface tracking of the moving 99 

boundary in multiphase system is an explicit representative that requires the 100 

computational meshes to track the evolving interface for each time-step. In contrast, 101 

the interface capturing approaches is an implicit representative that uses a phase 102 

function discretised on the fixed grid to represent the interface (Bonometti & 103 

Magnaudet, 2007). In present paper, conservative level-set method (LSM) is adopted 104 

as it is a simple and robust scheme of interface capturing approaches for tracking 105 

moving interfaces and shapes (Osher & Sethian, 1988). It permits numerical 106 

computations of such objects involving curves and surfaces to be performed on a 107 

fixed Cartesian grid without having to parameterize them (Olsson & Kreiss, 2005; 108 

Olsson, Kreiss, & Zahedi, 2007; Osher & Sethian, 1988). In the LSM, the surface 109 

tension force is conventionally modelled as a distributed body force though 110 

concentrated in a band around the interfaces. The variation of surface tension force 111 

across the interface can be difficulties in the application of others common interface 112 

capturing methods, including the volume-of-fluid (Rider & Kothe, 1998) (VOF) and 113 

lattice-Boltzmann method (LBM) (Takada, Misawa, Tomiyama, & Fujiwara, 2000). 114 

However, the LSM can resolve to the challenges of mass conservation and the 115 

treatment of discontinuities across the flexible interface (Olsson & Kreiss, 2005; 116 

Olsson et al., 2007). 117 

The present paper demonstrates systematic sets of numerical simulations for the 118 

microdroplet generation of a shear-thinning Na-CMC droplets in Newtonian flow at a 119 

microfluidic T junction using a developed predictive computational model. The 120 

present model is adopted with the integration of conservative level-set approach and 121 

non-Newtonian constitutive law.  Fundamental principles and application of 122 

microfluidic systems were presented due to the selection and interpretation of the 123 

subsequent numerical analysis. Numerical simulations of the Na-CMC microdroplets 124 

formation in an olive oil-based continuous phase were carried out. The present study 125 



      

reveals the interesting phenomena of shear-thinnings droplet formation during the 126 

systematic variation in flow rates, interfacial tension, and surface wettability. As a 127 

result, the rheological characteristics of Na-CMC solution are strongly depending on 128 

its concentration. Thus, the impact of these rheological characteristics of Na-CMC 129 

can be of great interest to provide an insightful understanding to the relevant physics 130 

of non-Newtonian droplet formation process in microfluidic flow. 131 

 132 

2. Experimental Methodology 133 

2.1 Microfluidics Device Fabrication 134 

A channel dimension of 220 µm (wc) × 90 µm (wd) × 76 µm (h) was used in present 135 

validation studies. It was fabricated in-house by photolithography and soft 136 

lithography technique. Fig. 1 illustrates the dimensions of a T-junction employed in 137 

the numerical and experimental studies. Prior to the start of fabrication process, an 138 

out sourced positive photolithographic mask (clear lines with a black background) 139 

was used to transfer of the photo-lithographically pattern onto the negative mould. 140 

The photolithographic mask with the desired layout of microchannel structure was 141 

designed using standard computer assisted design (CAD) program. The 142 

polydimethylsiloxane (PDMS) mould was fabricated by moulding a mixture of PDMS 143 

liquid pre-polymer, a 10:1 mixture of Sylgard 184 silicone elastomer and curing agent 144 

(Dow Corning, USA), onto the SU-8 master mould with SU-8 2025 (MicroChem 145 

Corporation, Newton, MA) as the photoresist that ultimately becomes the pattern on 146 

the silicon wafer. The glass slide with a cured PDMS thin layer and the surface of the 147 

PDMS mould with the micropattern indent then brought into conformal contact before 148 

flow experiment was conducted.  149 

 150 



      

Fig. 1: Illustration of (a) microfluidics T-junction composed of rectangular channels; 151 
(b) schematic diagram of microfluidics T-junction composed of rectangular channel; 152 
(c) Scanning electron microscope (SEM) image of fabricated T-junction of PDMS 153 
microchannel and cross section of PDMS microchannel. 154 
 155 

2.2 Fluid Characterisation 156 

A calibrated BS/U-tube viscometer was used to perform the kinematic viscosity 157 

measurement for the transparent Newtonian olive oil (Sigma Aldrich). The capillary 158 

diameter of BS/U-tube viscometer with 0.50 mm ± 0.01 mm was used. The 159 

viscometers were mounted upright in a beaker (2000 mL) of water at controlled room 160 

temperature (20 ± 2oC). Each sample solutions were allowed to attain the room 161 

temperature for 10 minutes. The viscosity measurements for Newtonian solution 162 

were conducted three times, and average values were taken for analysis. For shear-163 

thinnings Na-CMC ([C6H7O2(OH)CH2COONa]n, Sigma Aldrich) aqueous solution, the 164 

rheological measurements were performed on controlled stress rheometer (MCR 165 

302, Anton Paar) equipped with a cone-and-plate geometry (cone plate with 166 

diameter of 50 mm; angle 0.04 radian) at controlled temperature of 20oC. The 167 

samples were carefully loaded onto the measuring plate of the rheometer and left to 168 

idle for 10 minutes prior to viscosity measurement. Fig. 2 illustrates the shear 169 

viscosity against shear rate plot of Na-CMC solutions at various concentrations 170 

ranging from 0.02 wt% to 1.20 wt% has been plotted over a log-log scale that covers 171 

nearly six orders of magnitude of shear rate (Wong, Loizou, Lau, Graham, & 172 

Hewakandamby, 2017). In present work, power-law model is not potentially selected 173 

to describe the behaviour of shear-thinnings working fluid of Na-CMC aqueous 174 

solution as it poses limitations on its range of applicability over a wide range of shear 175 

rate. In order to circumvent the drawback of the power-law model, alternative 176 

approaches such as Carreau-Yasuda model utilize viscosity functions that have finite 177 

values both at very low and high shear rate (Chhabra & Richardson, 2008). 178 

Additionally, all the measurement data were well-fitted to the well-known Carreau-179 

Yasuda model (Chhabra & Richardson, 2008) for the shear-thinnings behaviour of 180 

Na-CMC: 181 

                            
   
                     (1) 182 



      

where ηo is zero shear viscosity, η∞ is infinite shear viscosity, λCY is the relaxation 183 

time,    is shear rate, n is power-law exponent and a is the fitting parameter for 184 

Carreau-Yasuda model. 185 

 186 

Fig. 2: Shear viscosity plotted against shear rate for a series of Na-CMC shear-187 
thinning solutions with different concentrations (Wong et al., 2017). 188 
 189 

2.3 Emulsification Setup 190 

The continuous (olive oil) and dispersed phase liquids (Na-CMC aqueous) were 191 

dispensed separately into the reservoirs of microchannel; each fluid was driven 192 

through microchannel at the desired continuous (Qc) and dispersed flow rates (Qd) 193 

using syringe pumps (AL-1000, Florida and NE-1000, Netherlands), respectively. 194 

The processes before and after droplet formation in microfluidics device were 195 

recorded using a high speed camera (MIC Hotshot 1280 cc) connected to an 196 

epifluorescence microscope (Olympus IX51, Japan). The experimental setup with 197 

flow visualisation is illustrated in Fig. 3. After stabilizing the system for predetermined 198 

time intervals (20 minutes), videos were recorded at 500 frames per second (fps) 199 

after each flow rates of either continuous or dispersed phase were adjusted. The 200 

average effective droplet diameter of 30 droplets under experimental condition was 201 

measured through an image processing routine using MATLAB. All the collected data 202 

will be validated prior to the parametric analysis.  203 



      

 204 

Fig. 3: Schematic diagram of experimental setup for flow visualization.  205 

 206 

3. CFD Modelling and Simulation 207 

3.1 Theory Model 208 

A predictive numerical model was developed to track the fluid-fluid interfaces 209 

between two immiscible fluid phases of different density and viscosity. This applied 210 

the conservative LSM from CFD module using COMSOL Multiphysics. The 211 

mathematical model used in the computational fluidic dynamic simulation utilized a 212 

numerical time-stepping procedure to obtain the model behaviour over time. The 213 

governing equations for momentum and conservation laws of mass was considered, 214 

which was shown in the following forms with the assumption that the fluid is 215 

incompressible: 216 

st
T Fp)(

t
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0 �� u             (3) 218 
 219 

where ρ,K, and Fst denote the density, dynamic viscosity, and the surface tension 220 

force respectively, p denotes pressure while І is the identity matrix. Naturally, the 221 

Navier-Stokes equation (Equation (2)) is solved on the fixed grid to control the 222 

motion of multiphase system. The density and the viscosity of the two fluids at any 223 

point can be calculated using the two equations given below: 224 

IUUUU ~)( 121 ��            (4) 225 

IKKKK ~)( 121 ��                      (5) 226 
where ρ1 and ρ2 are the densities of continuous phase and dispersed phase, and η1 227 

and η2 are the viscosities of continuous phase and dispersed phase. A smeared out 228 



      

approach is used where the discretisation of the Heaviside function (Hsm (ϕ)) can be 229 

useful as it is better suited to numerical computations (Deshpande & Zimmerman, 230 

2006): 231 
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 233 

where H  denotes the interface thickness. The Fst term acting on the interface 234 

between two fluid phases is determined by following equation: 235 

smst kF GV * n            (7) 236 

where V denotes surface tension, k denotes local interfacial curvature, nГ is the unit 237 

normal vector to the interface pointing into the droplet, and the δsm denotes the 238 

smeared out Dirac delta function (δsm) concentrated at the interface between two 239 

fluids. These above parameters can be calculated by Equation 8, 9, and 10, 240 

respectively: 241 
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To retain the level-set function (ϕ), a re-initialization procedure is required for the 245 

finite element approximation of the level-set equation. A re-initialized and 246 

conservative level-set method is used to describe and convect the fluid interface. 247 

The following equation describes the convection of re-initialized level-set function: 248 
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where γ and ε are numerical stabilization parameters, where the former denotes re-250 

initialization parameter and latter parameter determines the thickness of the 251 

interface. Equation (11) is coupled to the governing equations (Equation (2) and (3)) 252 

in present numerical model. The γ approximates the maximum speed occurring in 253 

the computational domain. The ε assumed as the maximum mesh size in 254 

subdomains in the neighbourhood of the interface. After the grid convergence 255 



      

analysis, the parameters γ and ε with the value of 0.065 m/s and 5.8×10-6 m were 256 

calculated based on the maximum flow velocity in microchannel and optimum mesh 257 

size, respectively. 258 

  259 

3.2 Domain Discretisation and Grid Convergence Analysis 260 

A T-shaped geometry with prescribed dimension of 220 µm × 90 µm was created 261 

and meshed with quadrilaterals elements. An entrance thickness (h) of 73.5 µm was 262 

prescribed in numerical system define the depth of the microchannel. The typical 263 

finite element mesh for structured mesh of two-dimension (2D) mapped mesh for a 264 

2D model was selected. Mesh refinement analysis were performed to quantify the 265 

dependency of simulation results on the grid size and achieve an optimal grid 266 

resolution. Meshes of varying degrees of resolution were set up for the T-junction 267 

domain with the same grid size of near-wall region. Table 1 illustrates three 268 

examples of mesh geometry with prescribed dimensions in COMSOL Multiphysics. 269 

Mesh can be arranged as to be clustered near the wall for optimum grid resolution in 270 

order to resolve the boundary layer flow in future work. 271 

 272 

Table 1: Comparison of a T-shaped geometry with coarser and finer mesh size. 273 

No. of Mesh Elements 976 (Coarse) 2072 4024 (Finer) 
2D Structured Mapped 

Mesh 

 

 

 

 

 

 
Two-phase Flow at 

t=0.05s and Q=0.05  

(Qc :2.0ml/hr; Qd:0.1 ml/hr)    
 

 274 

The present model is set up for transient analysis which provides the time domain 275 

response of a system subjected to time-dependent loads. The effect of mesh size 276 

was examined by increasing the number of mesh elements from initial number of 277 

elements of 976 (coarsest) to 98184 (finest). Finer grid size are generated by 278 

simultaneously increasing the number of nodes in all direction to obtain as close to a 279 

uniform refinement. The number of elements is increased by a mean factor of    for 280 

each refinement settings. Thus, the total number of nodes for each refinement is 281 

Surface Volume Fraction 



      

approximately doubled over the previous grid size. Preliminary test of grid 282 

convergence analysis was solely carried out at flow rate ratio, Q of 0.05, which is a 283 

quotient of a flow rate of the flow for dispersed phase and continuous phase. An 284 

acceptable relative error and error percentage of 0.15% and ≤ 1% between the last 285 

two finer grids (12166 and 15963) was obtained, respectively. Fig. 4(b) illustrates the 286 

grid convergence analysis at Q of 0.05. An optimal simulations results was achieved 287 

at 7644 number of elements. The relative error of measurements shows the error 288 

deviation in relation to the effective droplet diameter between each mesh resolutions. 289 

While the error percentage of measurements shows the error deviation in relation to 290 

the effective droplet diameter between numerical and experimental data. In the 291 

present work, all the parametric studies used, as key output, the effective droplet 292 

diameter. Therefore, an integration operator was added to find the area 293 

corresponding to the dispersed phase, where I
~

≥ 0.5, in order to calculate the 294 

effective droplet diameter by the following equation: 295 

³
:

:!� ddeff )5.0~(12 I
S

                   (12) 296 

This is the diameter of a spherical droplet that has equivalent volume of the formed 297 

droplet. The extensive studies of grid convergence analysis was also performed on 298 

different flow rate ratio. Fig. 4 illustrates the mesh dependence profile with error 299 

percentage of droplet size measurement at different flow rate ratio Q. For a constant 300 

Qc at 2.00 ml/hr, the effective droplet diameter was measured with the variation in Qd 301 

(0.08 ml/hr to 0.125 ml/hr) for various number of elements. As seen in Fig. 4, the 302 

results of convergence are found to achieve more rapidly and effectively in cases at 303 

lower flow rate ratio (Q ≤ 0.0675). Higher flow rate ratios are limited to a certain 304 

range in numerical model due to difficulties of numerical dissipation in the advection 305 

step of fluid simulation. Moreover, further refinement is required to sufficiently resolve 306 

the higher velocity profiles. Thus, the subsequent parametric studies were mainly 307 

based on Q of 0.05 at optimal mesh size. Particularly, the numerical simulations 308 

were performed at a time-step size of 2.57×10-5 seconds calculated using the 309 

Courant-Friedrichs-Lewy (CFL) conditions. It shows a relation between the 310 

computational cell size, the transient time-step size, and the fluid velocity within the 311 

cell. A Courant number of 0.25 is selected in the present study considering as robust 312 

value to maintain the stability of calculations. 313 



      

 314 

Fig. 4: Grid convergence analysis for different flow-rate ratio profile: (a) Q=0.04; (b) 315 
Q=0.05; (c) Q=0.0675; (d) Q=0.1; (e) Q=0.125; (f) combination of mesh refinement 316 
profile. 317 
 318 
 319 
3.3 Numerical Model Validation with Experimental Justification 320 

Mesh convergence analysis was studied to quantify the dependency of simulation 321 

results on mesh size and achieve an optimal grid resolution of 7644. A preliminary 322 



      

validation of numerical simulations of the formation of deionized water droplets in 323 

olive in a T-junction microchannel was carried out and gave qualitative agreement 324 

with laboratory experimental data to predict with reasonable accuracy in the range of 325 

velocity applied. The results of convergence is found to be achieved more rapidly at 326 

lower flow rate ratio. Fig. 5 illustrates the variation in effective droplet diameter 327 

between the experimental and numerical studies.  328 

 329 

 330 

Fig. 5: Comparison of (a) effective droplet diameter between numerical and 331 
experimental result in the range of velocity ratio applied. Error bars shown indicates 332 
the standard deviation in droplet size measurement of 30 droplets under fixed 333 
experimental condition. Dashed box shown denotes the (b) droplet breakup 334 
phenomena in the range between Q of 0.04 and 0.1. 335 
 336 
 337 
The data was recorded at 5×10-3 seconds intervals to capture the growth and 338 

detachment phenomenon of the fluid-fluid interfaces. A contact angle of 180o that 339 

Surface Volume Fraction 

(a)  

(b)  



      

represents the complete repulsion of Na-CMC droplets by the PDMS with 340 

hydrophobic channel wall surface was applied in the computation. As can be seen in 341 

Fig. 5, the numerical simulation of detachment process was shown in similar manner 342 

with the experimental data at Q < 0.0675. Nevertheless, such an agreement was 343 

physically unreasonable at higher Q as jet breakup phenomena is found to be more 344 

significant for numerical simulation over time. This might be due to the numerical 345 

dissipation increases the viscosity of working fluid and causes it appear more 346 

viscous than intended at higher Q. Thus, the Q of 0.05, as equivalent to the velocity 347 

ratio (uc/ud) of 8, was adopted in present parametric studies subsequently. 348 

 349 

3.4 Simulated Laplace Pressure of Droplet Interface Profile 350 

First, the static pressure is decreasing linearly along the cross-sectional 2D plane of 351 

the microchannel. Fig. 6 illustrates the pressure drop distribution along the channel a 352 

droplet containing with 0.02 wt% Na-CMC solution. 353 

 354 

Fig. 6: The pressure distribution of a generated 0.20wt% Na-CMC droplet interface 355 
along the T-junction microchannel at Q of 0.05. 356 
 357 
In the presence of curved interfaces, the curvature induce a pressure jump, which is 358 

known as Laplace pressure. The Laplace pressure jumps was determined in the 359 



      

path across the droplet body while crossing the front and rear interfaces. As the 360 

dimension of the interest gets smaller, surfaces tension becomes dominant over 361 

gravitational forces and others physical forces such as viscous and inertial forces. 362 

The surface tension becomes an important surface energy parameter that controls 363 

the stability of interfaces between the two phases when the droplets are forming. 364 

Due to the existence of surface tension effect in a case of a liquid droplet, the 365 

Laplace law implies a greater pressure inside the droplet than a continuous phase. 366 

As the radius of the droplet become smaller, the pressure becomes larger on the 367 

concave side of liquid interface. A Young-Laplace equation is usually used to 368 

determine the pressure difference across a fluid interface as a function of curvature. 369 

Moreover, the magnitude of this pressure differential can be expressed in term of 370 

surface tension: 371 
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where σ is the surface tension of the respective liquid interface and R1and R2 are the 373 

two principal curvature radii of the interface. Additionally, the effect of viscous 374 

dissipation inside the droplets may also prominently affects the pressure drop 375 

distribution when the viscous effect is considerably increased. 376 

 377 

4. Results and Discussion 378 

4.1 Effect of Na-CMC Viscosity on Droplet Breakup Time and Production Rate 379 

The present investigation was designed to determine the Na-CMC viscosity effect on 380 

the droplet breakup time and production rate. The viscosity of polymer solution is a 381 

function of concentration and the molecular weight of dissolved polymer. While the 382 

concentration of Na-CMC solution is increased in a series of simulations from 0.02 383 

wt% to 1.20 wt% at a constant Q of 0.05, the evolution of droplet breakup time can 384 

be discerned in two distinct non-monotonic behaviour. Fig. 7(a) illustrates the Na-385 

CMC concentration effect on the normalized droplet breakup time whereas the 386 

normalized production rate is shown in Fig. 7(b). The variation of viscosity of a shear 387 

thinning drop occurs during the pinch off process. Initially, the breakup time 388 

decreases as Na-CMC concentration increases from 0.02 wt% to 0.40 wt%. The 389 

shear-thinning effect of Na-CMC solution increases with the concentration. The 390 

greater shear-thinning effect may exhibit a decrease in polymer viscosity upon the 391 



      

application of shear near the channel wall due to the inertial force. At concentrations 392 

well above 0.40 wt%, the Na-CMC droplet breakup time increases may to the 393 

viscous force becomes significantly prevailing over the inertial force induced by the 394 

continuous phase on the forming interface. In general, the largest shear rate occurs 395 

at the corner edge of the T-junction and thus the shear-induced destabilization of the 396 

dispersed thread causes the breakup of thread leading to the formation of droplets. 397 

As can be seen in Fig. 8, the distribution of non-Newtonian wall shear-rate 398 

decreases as compared to the Newtonian wall shear rate profile. While in the lower 399 

wall shear rate range, the Na-CMC solutions exhibited a significant increase in 400 

viscosity. This means the low shear rate viscosity occurs at the high concentration of 401 

Na-CMC content. Consequently, the droplets pinch-off in larger viscosity fluids for 402 

which the inertial effects are unamplified. 403 

(a) 404 

 405 
(b) 406 

   407 
Fig. 7: Effect of Na-CMC concentration on (a) droplet breakup time (b) droplet 408 
production rate (for system: Qd/Qc=0.05). 409 



      

 410 
At dilute Na-CMC concentrations below 0.40 wt%, the viscosity effect is not 411 

considerable as the direct intermolecular interactions are negligible. As the Na-CMC 412 

concentration increases, the shear-thinning effect becomes more significant and 413 

causes rapid pinch-off due to the high shear stress exerted by the continuous phase 414 

near to the wall. The viscosity of the shear thinning drop is reduced when the drop 415 

begins to neck response to the increased shear rate in that region. As the neck 416 

continues to thin, the region of lower viscosity grows to encompass almost the entire 417 

drop occurring within the neck and just outside it where the outflows from the neck 418 

occur (Malcolm R. Davidson & Cooper-White, 2006; M. R. Davidson, Cooper-White, 419 

& Tirtaatmadja, 2004). Nevertheless, extending breakup occurs and lower production 420 

rate was found for the Na-CMC solution concentration above 0.40 wt%. This is 421 

mainly caused by the development of entanglement coupling between the polymer 422 

chains, which begins manipulating the fluid characteristics of Na-CMC solution. The 423 

elongation of the necking into a thin filament connect between the primary droplet 424 

and the upper dispersed phase thread, suggest that an increase in polymer 425 

concentration which plays an important role in resisting drop pinch-off with the 426 

formation of thinning filament. Thus, the viscous fluid thread is then stretched by the 427 

mainstream flow to the downstream region and the breakup event is delayed 428 

substantially.  429 



      

 430 

Fig. 8: Shear rate profile of fluid flow at the edge of T-junction microchannel along 431 
the arc length of continuous phase for (a) Newtonian system; (b) 0.40wt% Na-CMC 432 
non-Newtonian system; and (c) 1.0 wt% Na-CMC non-Newtonian system (for 433 
system: Qd/Qc=0.05). 434 
 435 
Fig. 9 illustrates the Laplace pressure profile of a Na-CMC droplet interface 436 

curvature for different polymer concentrations at the middle plane of the 437 

microchannel. At dilute Na-CMC concentration below 0.40 wt%, droplets are self-438 

propelled some distances from the wall mainly subjected to the gradient of the 439 

surface energy and higher velocity flow stream of the main channel after the sharp 440 

breakup occurs at the corner of T-junction. For the larger concentration of Na-CMC 441 

(C > 0.40 wt%) dispersed fluid, the presence of instabilities promotes the breakup of 442 

jets. After the formation of the primary breakup droplets, the generated droplet 443 

moves near the wall of microchannel as it is initially exposed to the flow projected 444 

from the side branch at the moment of breakup. After a certain distance, it will flow 445 

near the center of the bulk phase. The droplet with a radius in an emulsion will exert 446 

greater pressure on the inner concave interface than on the convex side. When the 447 



      

droplet deformation occurs, the Laplace pressure of the deformed droplet is a 448 

function of the radius along the droplet surface (see section 3.4). Thus, as the 449 

dispersed thread is elongated, a smaller droplet will be formed causing smaller 450 

radius of curvature that result in a larger inward force and expected to experience a 451 

greater pressure (see Fig. 9). 452 

 453 

 454 

Fig. 9: A qualitative plot of the Laplace pressure profile of a generated Na-CMC 455 
droplet interface curvature at concentration of 0.10 wt%, 0.40 wt%, 0.80 wt%, and 456 
1.00 wt% along the middle plane of microchannel (for system: Qd/Qc=0.05). 457 
 458 

4.2 Effect of Surface Wettability on Droplet Breakup Time and Production Rate 459 

The effect of shear-thinning nature on droplet breakup process has not been 460 

extensively studied in the preceding analysis. In a T-shaped microchannel, the 461 

continuous and dispersed phase were dispensed at the prescribed flow rates 462 

through the microchannel with a hydrophobic wall surface (θ > 90o). Additionally, the 463 

continuous phase needs to wet the surface of the channel walls preferentially in 464 

order to repel the dispersed phase droplets away from the wall. The surface 465 

wettability of microchannel are of utmost importance for the stability of the droplets 466 

formation process in a microfluidic device. The effect of surface wettability on the 467 

total droplet formation time, which is the transition between a growing and a 468 

detached droplet, was discussed. Fig. 10 illustrates surface wettability effect on the 469 



      

normalized droplet formation rate. Results revealed that the droplet detachment 470 

occurs more rapidly at shorter times as the θ increases. The inertial force, shear 471 

force and surface wettability are competing effects influencing the dynamics of the 472 

droplet breakup process. The wettability driving the fluid toward the surface and the 473 

contact area between the droplets and solid surface increases for the smaller θ. The 474 

smaller θ tends to reduce the droplet deformation and delay the breakup process. As 475 

θ increases, the thread is no longer flowing close to the wall as its adhesion strength 476 

to the wall reduces, causing less resistance to flow. Therefore, the inertial force 477 

driving the flow of thread is prevailing. The time for the formation of droplet is also 478 

essentially dependent of the strength of shear force acting on the interface, because 479 

it dominates over the adhesion force for larger θ. Bashir et al. (2011) reported that 480 

the degree of confinement promotes the breakup for the larger θ; whereas the 481 

degree of confinement suppresses the breakup for smaller θ. 482 

 483 

 484 

 485 

 486 

 487 

 488 

 489 

 490 

 491 

 492 

 493 
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 495 

 496 

 497 

 498 
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 501 

 502 

Fig. 10: (a) Effect of contact angle on the normalized droplet formation time of Na-503 
CMC solutions. (b) Variation in normalized droplet formation rate of shear-thinning 504 
droplets for a. dilute (C < 0.40 wt%) and b. semi-dilute (C > 0.40 wt%) Na-CMC 505 
concentrations regime at fixed θ (for system: Qd/Qc=0.05). 506 

 507 

(a) 

(b) 



      

For a fixed value of θ, the result reveals that the droplet formation time decreases as 508 

the concentration of the Na-CMC increases from 0.02 wt% to 0.40 wt% (see Figure 509 

10). Interestingly, a similar phenomenon does not happen for the larger 510 

concentration (C > 0.40 wt%). This is due to the fact that the concentration of the 511 

polymer solutions beyond the critical overlap concentration exert a significant 512 

influence on retarding the droplet breakup time. As previously mentioned, the direct 513 

intermolecular interactions can be neglected for low concentrations. Thus, the rapid 514 

pinch-off of shear-thinning droplets occurring was due to the high shear stress in 515 

these low concentrations regimes. When the Na-CMC concentration is increasing, 516 

the rheological behaviour of Na-CMC solution may be governed by the development 517 

of entanglement coupling between the chains and contribute significantly to the 518 

increasing of viscosity and the formation of thinning filament.  519 

 520 

Hong and Cooper-White (2009) studied the effect of non-Newtonian Carbopol 521 

dispersions on the droplet detachment behaviour in the bulk phase of silicone oil. 522 

The Carbopol droplet pinch-off time increases with increasing the viscosity of 523 

dispersions37. Besides, Arratia et al.(2009) also reported that the time for polymer 524 

polyacrylamide (PAA) droplet breakup was retarded as the polymer molecular weight 525 

is increased at fixed Q (Hong & Cooper-White, 2009). Husny and Cooper-White 526 

(2006) also claimed that pinch-off occurred rapidly without any significant filament 527 

formation during necking for Newtonian droplet formation; but, this rapid necking 528 

event was retarded with the formation of a thinning filament for polyethylene oxide 529 

(PEO) solutions (Husny & Cooper-White, 2006). As can be seen in Fig. 10, a similar 530 

observation was found for the higher Na-CMC concentration as the formation of a 531 

thin and stable filament between the droplet and thread is more apparent when C > 532 

0.40 wt%. The dynamics of the thinning filament are governed by the shear stress 533 

and viscous pressure, by which the filament is elongated drastically and resists the 534 

droplet pinch-off. Thus, the delayed pinch-off may be due to the retardation effect of 535 

the fluid elasticity, which it can be increased by increasing the polymer concentration. 536 

However, the entire phenomena was observed from our predictive model with no 537 

elastic stress applied in our present study.  Hence, that shear-thinning alone is also 538 

sufficient to induce a filament and that elasticity is not necessary.  539 

 540 



      

In contrast, results revealed that the production rate of the Na-CMC droplet 541 

increases with enhanced surface wettability. The droplet generation frequency 542 

increases with dispersed phase concentration over the range of 0.02 wt% to 0.40 543 

wt% when the contact angle was held constant at each wetting condition. However, 544 

the rate of droplet production begins to decrease with increasing the concentration of 545 

Na-CMC dispersed phase concentration larger than 0.40 wt%, as noted in the 546 

previous section.  547 

A comparison of pressure profiles of Na-CMC droplet at different contributions were 548 

illustrated in Fig. 11. At low and dilute concentrations of the Na-CMC polymer, the 549 

pressure drop of a stabilized curved surface of Na-CMC droplet is increasing along 550 

the bulk phase with increasing the wetting conditions. The weak adhesion and strong 551 

cohesion of the liquid in the bulk phase was found for the larger contact angles. The 552 

unfavourability of channel surface to the dispersed thread plays and leads a major 553 

role in the transport of droplet and lead to a larger shear force to be exerted on the 554 

drop surface. Rapid deformation of the droplet occurs due to the adequate shearing 555 

force induced by the continuous phase. Thus, the droplet mass was shown to 556 

decrease when the initial contact angle is larger and leads to a larger pressure drop. 557 

The higher concentration of Na-CMC dispersed phase contributes the same 558 

phenomenon. For the Na-CMC concentration above 0.40 wt%, lower contact angles 559 

promote and dampen greater spreading and dampens the breakup process. The 560 

spreading of the elongated thread is eventually broken up into smaller droplets when 561 

the surface energy is overcome. Neglecting the impact of fluid property on surface 562 

wettability, the much larger concentration of fluid samples withdrawn from the 563 

dispersed thread can create much greater pressure drop at the same contact angle.  564 



      

 565 

Fig. 11: A qualitative plot of the Laplace pressure profile of a generated Na-CMC 566 
droplet interface curvature at concentration of 0.20 wt% and 0.80 wt%, along the 567 
middle plane of microchannel at θ =130o and 170o (for system: Qd/Qc=0.05). 568 
 569 
 570 
4.3 Effect of Interfacial Tensions on Droplet Breakup Time and Production 571 

Rate 572 

The effect of interfacial tension on the time taken for the droplet growth, deformation 573 

and detachment were also investigated. The impact of interfacial tension on the Na-574 

CMC droplet breakup time is illustrated in Fig. 12(a). As a result, the droplet breakup 575 

time increases with increasing interfacial tension. As interfacial tension increases, 576 

the retraction of the interface induced by surface tension forces becomes greater 577 

due to the relatively high surface free energy. This will tend to hinder the droplet 578 

formation process as the Na-CMC droplets take longer time approach to 579 

thermodynamics equilibrium. At the low concentration regime (C < 0.40 wt%), the 580 

droplet is pinched-off sharply at the corner of T-junction. In addition, this breakup 581 



      

regime is driven primarily by the build-up of pressure upstream which is mainly due 582 

to the high degree of confinement of the droplet in bulk phase.  583 

 584 

 585 
 586 

 587 
Fig. 12: (a) Effect of interfacial tension on the normalized droplet formation time of 588 
Na-CMC solutions (for system: Qd/Qc=0.05). (b) Variation in normalized droplet 589 

(a) 

(b) 



      

formation rate of Na-CMC droplets for various concentrations at each interfacial 590 
tension (σ). 591 
The droplet breakup time decreases when Na-CMC concentration is increased from 592 

0.02 wt% to 0.40 wt% (see Figure 12(b)). In contrast to this phenomenon, the break-593 

up time increases as Na-CMC concentration is larger than 0.40 wt%. For dilute Na-594 

CMC concentrations below 0.40 wt%, the interfacial forces are more dominant than 595 

viscous forces due to the insufficient polymer chain overlap leading to earlier 596 

occurrence of pinch-off. While the Na-CMC concentrations above 0.40 wt%, 597 

interfacial forces are less prevalent in strength and the larger viscosities give rise to 598 

longer breakup time which can be attributed to the higher magnitude of the dispersed 599 

thread pressure. A similar observation has been reported by Zhang and Basaran 600 

(1995) who studied the high viscous pendant drops (Zhang & Basaran, 1995). 601 

Tirtaatmadja et al. (2006) also claimed that the polymer molecules can be highly 602 

extended during their approach to pinch region and this contributes to the formation 603 

of filament. The filament can be further extended by the stretching force at a 604 

constant rate until full extension of polymer coil is achieved (Tirtaatmadja, McKinley, 605 

& Cooper-White, 2006). In general, high stretching of polymer chains is associated 606 

with high elasticity.  607 

 608 

For simplicity the viscous force is disregarded, the jetting phenomena and the 609 

prolonged thinning of the fluid filament at the rear is more substantial for the shear-610 

thinning droplet with lower interfacial tension at dilute concentration regimes. Less 611 

energy is required to disrupt an interface with low magnitude of interfacial tension. 612 

Thus, low interfacial tension liquid thread tends to breakup rapidly. Nevertheless, at 613 

low Q, jetting occurs when the inertial forces induced by continuous phase exceed 614 

interfacial tension forces. As noted in the previous observation, the length of filament 615 

gets longer when the Na-CMC polymer concentration is increased. This presumably 616 

prevents the neck of the dispersed thread from pinching off. Thus, the existence of a 617 

thin polymeric filament will tend to decelerate the breakup process, especially for C > 618 

0.40 wt%. Previous studies have reported that the formation of filament was due to 619 

the elasticity effect. Nevertheless, a similar behaviour was also found for the working 620 

solution which is purely viscous and shear-thinning characteristics at the larger 621 

concentrations. 622 

 623 



      

The breakup time for a droplet is increased leading to a decreased production rate at 624 

fixed Q for larger magnitude of interfacial tension forces. This exhibits the similar 625 

observations to the studies made by Peng et al. (2011) and Bashir et al. (2011) who 626 

studied water-oil emulsions in flow-focusing and cross-flowing microfluidics devices, 627 

respectively. The droplet production rate at each fixed interfacial tension has been 628 

investigated. In lower concentration regimes (C < 0.40 wt%), the earlier occurrence 629 

of droplet breakup is observed. In contrast, the production rate decreases with 630 

increasing the Na-CMC concentration in the semi-dilute concentration regime (C > 631 

0.40 wt%), it takes a longer time for the dispersed phase viscous force to be 632 

overcome by the opposing inertial force and shear stress induced by the continuous 633 

phase. 634 

 635 

The pressure-jump profiles of Na-CMC droplet at different interfacial tensions were 636 

illustrated in Fig. 13. At lower concentration of Na-CMC solutions, the larger 637 

interfacial tension contributes to a larger pressure drop profile. As interfacial tension 638 

increases, the strength of attractive force increases and causes the liquid surface to 639 

contract toward the interior phase and thus the repulsive collisional forces is reduced 640 

in order to resist the contraction. Thus, the breakup process of droplet is hindered 641 

and larger droplet is generated. Similarly, fluids with the higher concentration 642 

produce larger size droplets at the larger surface tensions. Nevertheless, the 643 

generation of smaller droplets did not reveal a larger pressure-drop profiles when 644 

compare to the previous consequences. It is postulated that the effect of surface 645 

tension enables higher surface energy which is caused by the gradient of 646 

confinement. Forcing the detached droplet translocate through a confined region will 647 

increase the pressure within the droplet at the location where it is almost fully 648 

occupied. This causes the increment of the curvature effect that requires the external 649 

fluid to apply the extra pressure.  650 



      

 651 

Fig. 13: A qualitative plot of the Laplace pressure profile of a generated Na-CMC 652 
droplet interface curvature at concentration of 0.20 wt% and 0.80 wt% along the 653 
middle plane of microchannel at σ =130o and 170o (for system: Qd/Qc=0.05). 654 
 655 

5. Conclusions  656 

The essential role of viscosity, surface wettability, and interfacial tension on 657 

emulsification process of Na-CMC shear-thinning droplet has been highlighted in the 658 

present simulation using conservative level-set numerical method. The evolution of 659 

the breakup time and the droplet production rate is effectively governed by the 660 

physical properties of working fluid. Olive oil was selected as the continuous phase 661 

while the Na-CMC polymer was used as the non-Newtonian dispersed phase fluid. 662 

The present simulation data revealed that droplet breakup time and production rate 663 

have a striking non-monotonic relationship with the Na-CMC polymer concentration 664 

due to the considerable rheological shear-thinning nature of Na-CMC polymer 665 

solution. As the concentration increases, the polymer concentration crosses over 666 

from the dilute to semi-dilute regime. While C < 0.40 wt%, the droplet breakup time 667 



      

decreases when the Na-CMC concentration is increased at fixed θ and σ. While in 668 

semi-dilute regime, droplet breakup time increases when if Na-CMC concentration is 669 

increased. This phenomenon is mainly due to the dispersed phase viscous forces 670 

dominating over the breakup dynamics and relevant hydrodynamics. As Na-CMC 671 

concentration increases, a laminar elongated dispersed thread is formed connecting 672 

to the primary droplet due to the high viscous pressure, and thus the droplet breakup 673 

point moves progressively downstream of the outlet channel. The presence of high 674 

concentration of polymer molecules leads to a prolonged fluid thread and retardation 675 

of pinch-off development. In present parametric analysis, there are many features 676 

that were previously attributed to elastic effects that still remain a defining challenge 677 

for the highly shear-thinning and viscous Na-CMC polymer solution. This illustrates 678 

the potential of integrating the elastic stress model with present numerical method, in 679 

order to investigate the fluid elasticity effect on the growth of droplet with shear-680 

thinning characteristics. 681 

 682 

Nomenclature 683 

a Fitting parameter in Carreau-Yasuda model 684 

deff Effective droplet diameter (μm) 685 

Fst Surface tension force acting on the interface (N/m3) 686 

FD Cross flow drag force (N/m3) 687 

h Depth of the channel (µm) 688 

I Identity matrix 689 

k Curvature of fluid-fluid interface 690 

n Power-law exponent for Carreau-Yasuda Model 691 

nΓ Unit normal vector at the interface 692 

p Pressure (N/m2) 693 

Q Flow rate ratio  694 

Qc  Flow rate of the continuous phase (ml/hr) 695 



      

Qd Flow rate of the dispersed phase (ml/hr) 696 

t Time-step (s) 697 

u   Velocity component in x-direction (m/s) 698 

v  Velocity component in y-direction (y-direction) (m/s) 699 

u Velocity field  700 

R Curvature radii of the interface (m) 701 

 702 

Greek Symbols 703 

η Dynamic viscosity of fluid (Pa.s) 704 

ηd Dynamic viscosity of the dispersed phase (Pa.s) 705 

ηc  Dynamic viscosity of the continuous phase (Pa.s) 706 

ηo Zero shear viscosity (Pa.s) 707 

η∞ Infinite shear viscosity (Pa.s) 708 

    Viscosity ratio (     ) 709 

λCY Relaxation Time in Carreau-Yasuda Model(s) 710 

U Fluid density (kg/m3) 711 

τ Shear stress (Pa) 712 

   Shear rate (1/s) 713 

  Reinitialization parameter (m/s) 714 

ε Thickness of the interface (m) 715 

σ Interfacial tension (mN/m) 716 

ϕ Level set function 717 

δsm Dirac delta function concentrated at interface 718 



      

 Ω Computational domain 719 

∂Ω Domain boundary 720 
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