117 research outputs found

    Citizen scientists filling knowledge gaps of phosphate pollution dynamics in rural areas

    Get PDF
    In situ monitoring is fundamental to manage eutrophication in rivers and streams. However, in recent decades, the frequency and spatial coverage of regulatory monitoring have often been reduced due to funding and infrastructure limitations. This reduction has made it impossible to provide adequate coverage for most water bodies. In this study, trained citizen scientists filled spatial and temporal gaps in agency monitoring across a major catchment in rural England. By integrating data from citizen scientists, regulatory agencies, and the local water company, it was possible to demonstrate the opportunities for hypothesis-based citizen scientist monitoring to identify continuous and event-driven sources of phosphate pollution. Local citizen scientists effectively covered important spatial gaps, investigating river conditions both upstream and downstream of suspected pollution point sources, improving the identification of their temporal dynamics. When combined with long-term monitoring data from regulatory agencies, it became possible to identify areas within the catchment that exhibited increased phosphate concentrations during periods of low river discharge (summer). Inter-annual trends and anomaly detection suggested that continuous pollution sources dominated over event-driven sources in many sub-basins, allowing for the prioritisation of mitigation actions. This study highlights the opportunity for citizen scientists to fill gaps in regulatory monitoring efforts and contribute to the improved management of eutrophication in rural catchments

    Employing Plant Functional Groups to Advance Seed Dispersal Ecology and Conservation

    Get PDF
    Seed dispersal enables plants to reach hospitable germination sites and escape natural enemies. Understanding when and how much seed dispersal matters to plant fitness is critical for understanding plant population and community dynamics. At the same time, the complexity of factors that determine if a seed will be successfully dispersed and subsequently develop into a reproductive plant is daunting. Quantifying all factors that may influence seed dispersal effectiveness for any potential seed-vector relationship would require an unrealistically large amount of time, materials and financial resources. On the other hand, being able to make dispersal predictions is critical for predicting whether single species and entire ecosystems will be resilient to global change. Building on current frameworks, we here posit that seed dispersal ecology should adopt plant functional groups as analytical units to reduce this complexity to manageable levels. Functional groups can be used to distinguish, for their constituent species, whether it matters (i) if seeds are dispersed, (ii) into what context they are dispersed and (iii) what vectors disperse them. To avoid overgeneralization, we propose that the utility of these functional groups may be assessed by generating predictions based on the groups and then testing those predictions against species-specific data. We suggest that data collection and analysis can then be guided by robust functional group definitions. Generalizing across similar species in this way could help us to better understand the population and community dynamics of plants and tackle the complexity of seed dispersal as well as its disruption

    Advancing an interdisciplinary framework to study seed dispersal ecology

    Get PDF
    Although dispersal is generally viewed as a crucial determinant for the fitness of any organism, our understanding of its role in the persistence and spread of plant populations remains incomplete. Generalizing and predicting dispersal processes are challenging due to context dependence of seed dispersal, environmental heterogeneity and interdependent processes occurring over multiple spatial and temporal scales. Current population models often use simple phenomenological descriptions of dispersal processes, limiting their ability to examine the role of population persistence and spread, especially under global change. To move seed dispersal ecology forward, we need to evaluate the impact of any single seed dispersal event within the full spatial and temporal context of a plant’s life history and environmental variability that ultimately influences a population’s ability to persist and spread. In this perspective, we provide guidance on integrating empirical and theoretical approaches that account for the context dependency of seed dispersal to improve our ability to generalize and predict the consequences of dispersal, and its anthropogenic alteration, across systems. We synthesize suitable theoretical frameworks for this work and discuss concepts, approaches and available data from diverse subdisciplines to help operationalize concepts, highlight recent breakthroughs across research areas and discuss ongoing challenges and open questions. We address knowledge gaps in the movement ecology of seeds and the integration of dispersal and demography that could benefit from such a synthesis. With an interdisciplinary perspective, we will be able to better understand how global change will impact seed dispersal processes, and potential cascading effects on plant population persistence, spread and biodiversity

    Depression prevalence using the HADS-D compared to SCID major depression classification:An individual participant data meta-analysis

    Get PDF
    Objectives: Validated diagnostic interviews are required to classify depression status and estimate prevalence of disorder, but screening tools are often used instead. We used individual participant data meta-analysis to compare prevalence based on standard Hospital Anxiety and Depression Scale – depression subscale (HADS-D) cutoffs of ≥8 and ≥11 versus Structured Clinical Interview for DSM (SCID) major depression and determined if an alternative HADS-D cutoff could more accurately estimate prevalence. Methods: We searched Medline, Medline In-Process & Other Non-Indexed Citations via Ovid, PsycINFO, and Web of Science (inception-July 11, 2016) for studies comparing HADS-D scores to SCID major depression status. Pooled prevalence and pooled differences in prevalence for HADS-D cutoffs versus SCID major depression were estimated. Results: 6005 participants (689 SCID major depression cases) from 41 primary studies were included. Pooled prevalence was 24.5% (95% Confidence Interval (CI): 20.5%, 29.0%) for HADS-D ≥8, 10.7% (95% CI: 8.3%, 13.8%) for HADS-D ≥11, and 11.6% (95% CI: 9.2%, 14.6%) for SCID major depression. HADS-D ≥11 was closest to SCID major depression prevalence, but the 95% prediction interval for the difference that could be expected for HADS-D ≥11 versus SCID in a new study was −21.1% to 19.5%. Conclusions: HADS-D ≥8 substantially overestimates depression prevalence. Of all possible cutoff thresholds, HADS-D ≥11 was closest to the SCID, but there was substantial heterogeneity in the difference between HADS-D ≥11 and SCID-based estimates. HADS-D should not be used as a substitute for a validated diagnostic interview.This study was funded by the Canadian Institutes of Health Research (CIHR, KRS-144045 & PCG 155468). Ms. Neupane was supported by a G.R. Caverhill Fellowship from the Faculty of Medicine, McGill University. Drs. Levis and Wu were supported by Fonds de recherche du Québec - Santé (FRQS) Postdoctoral Training Fellowships. Mr. Bhandari was supported by a studentship from the Research Institute of the McGill University Health Centre. Ms. Rice was supported by a Vanier Canada Graduate Scholarship. Dr. Patten was supported by a Senior Health Scholar award from Alberta Innovates, Health Solutions. The primary study by Scott et al. was supported by the Cumming School of Medicine and Alberta Health Services through the Calgary Health Trust, and funding from the Hotchkiss Brain Institute. The primary study by Amoozegar et al. was supported by the Alberta Health Services, the University of Calgary Faculty of Medicine, and the Hotchkiss Brain Institute. The primary study by Cheung et al. was supported by the Waikato Clinical School, University of Auckland, the Waikato Medical Research Foundation and the Waikato Respiratory Research Fund. The primary study by Cukor et al. was supported in part by a Promoting Psychological Research and Training on Health-Disparities Issues at Ethnic Minority Serving Institutions Grants (ProDIGs) awarded to Dr. Cukor from the American Psychological Association. The primary study by De Souza et al. was supported by Birmingham and Solihull Mental Health Foundation Trust. The primary study by Honarmand et al. was supported by a grant from the Multiple Sclerosis Society of Canada. The primary study by Fischer et al. was supported as part of the RECODEHF study by the German Federal Ministry of Education and Research (01GY1150). The primary study by Gagnon et al. was supported by the Drummond Foundation and the Department of Psychiatry, University Health Network. The primary study by Akechi et al. was supported in part by a Grant-in-Aid for Cancer Research (11−2) from the Japanese Ministry of Health, Labour and Welfare and a Grant-in-Aid for Young Scientists (B) from the Japanese Ministry of Education, Culture, Sports, Science and Technology. The primary study by Kugaya et al. was supported in part by a Grant-in-Aid for Cancer Research (9–31) and the Second-Term Comprehensive 10-year Strategy for Cancer Control from the Japanese Ministry of Health, Labour and Welfare. The primary study Ryan et al. was supported by the Irish Cancer Society (Grant CRP08GAL). The primary study by Keller et al. was supported by the Medical Faculty of the University of Heidelberg (grant no. 175/2000). The primary study by Love et al. (2004) was supported by the Kathleen Cuningham Foundation (National Breast Cancer Foundation), the Cancer Council of Victoria and the National Health and Medical Research Council. The primary study by Love et al. (2002) was supported by a grant from the Bethlehem Griffiths Research Foundation. The primary study by Löwe et al. was supported by the medical faculty of the University of Heidelberg, Germany (Project 121/2000). The primary study by Navines et al. was supported in part by the Spanish grants from the Fondo de Investigación en Salud, Instituto de Salud Carlos III (EO PI08/90869 and PSIGEN-VHC Study: FIS-E08/00268) and the support of FEDER (one way to make Europe). The primary study by O'Rourke et al. was supported by the Scottish Home and Health Department, Stroke Association, and Medical Research Council. The primary study by Sanchez-Gistau et al. was supported by a grant from the Ministry of Health of Spain (PI040418) and in part by Catalonia Government, DURSI 2009SGR1119. The primary study by Gould et al. was supported by the Transport Accident Commission Grant. The primary study by Rooney et al. was supported by the NHS Lothian Neuro-Oncology Endowment Fund. The primary study by Schwarzbold et al. was supported by PRONEX Program (NENASC Project) and PPSUS Program of Fundaçao de Amparo a esquisa e Inovacao do Estado de Santa Catarina (FAPESC) and the National Science and Technology Institute for Translational Medicine (INCT-TM). The primary study by Simard et al. was supported by IDEA grants from the Canadian Prostate Cancer Research Initiative and the Canadian Breast Cancer Research Alliance, as well as a studentship from the Canadian Institutes of Health Research. The primary study by Singer et al. (2009) was supported by a grant from the German Federal Ministry for Education and Research (no. 01ZZ0106). The primary study by Singer et al. (2008) was supported by grants from the German Federal Ministry for Education and Research (# 7DZAIQTX) and of the University of Leipzig (# formel. 1–57). The primary study by Meyer et al. was supported by the Federal Ministry of Education and Research (BMBF). The primary study by Stone et al. was supported by the Medical Research Council, UK and Chest Heart and Stroke, Scotland. The primary study by Turner et al. was supported by a bequest from Jennie Thomas through Hunter Medical Research Institute. The primary study by Walterfang et al. was supported by Melbourne Health. Drs. Benedetti and Thombs were supported by FRQS researcher salary awards. No other authors reported funding for primary studies or for their work on this study. No funder had any role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication

    Employing plant functional groups to advance seed dispersal ecology and conservation

    Get PDF
    Seed dispersal enables plants to reach hospitable germination sites and escape natural enemies. Understanding when and how much seed dispersal matters to plant fitness is critical for understanding plant population and community dynamics. At the same time, the complexity of factors that determine if a seed will be successfully dispersed and subsequently develop into a reproductive plant is daunting. Quantifying all factors that may influence seed dispersal effectiveness for any potential seed-vector relationship would require an unrealistically large amount of time, materials and financial resources. On the other hand, being able to make dispersal predictions is critical for predicting whether single species and entire ecosystems will be resilient to global change. Building on current frameworks, we here posit that seed dispersal ecology should adopt plant functional groups as analytical units to reduce this complexity to manageable levels. Functional groups can be used to distinguish, for their constituent species, whether it matters (i) if seeds are dispersed, (ii) into what context they are dispersed and (iii) what vectors disperse them. To avoid overgeneralization, we propose that the utility of these functional groups may be assessed by generating predictions based on the groups and then testing those predictions against species-specific data. We suggest that data collection and analysis can then be guided by robust functional group definitions. Generalizing across similar species in this way could help us to better understand the population and community dynamics of plants and tackle the complexity of seed dispersal as well as its disruption

    hot

    No full text
    Intersexual spatial relationships in a lekking species: blue-crowned manakins and femal

    Enigmatic declines in bird numbers in lowland forest of eastern Ecuador may be a consequence of climate change

    No full text
    Bird populations have declined in many parts of the world but most of those declines can be attributed to effects of human activities (e.g., habitat fragmentation); declines in areas unaffected by human activities are not common. We have been sampling bird populations at an undisturbed site in lowland forest of eastern Ecuador annually since 2001 using a combination of mist nets and direct observations on two 100-ha plots. Bird numbers fluctuated on both plots during the first 8 years but did not show a consistent pattern of change. Since about 2008, numbers of birds on both plots have declined; capture rates in 2014 were ∼40% less than at the start of the study and observation rates were ∼50% less. Both understory and canopy species declined in abundance. Overall, insectivores showed the most pronounced declines but declines varied among trophic groups. The period from 2008 onward also was a period of stronger La Niña events which, at this study site, are associated with increased rainfall. The mechanism for the declines is not known but likely reflects a combination of reduced reproductive success coupled with reduced survival associated with changing climate

    Annual and spatial variation in composition and activity of terrestrial mammals on two replicate plots in lowland forest of eastern Ecuador

    No full text
    Terrestrial mammals are important components of lowland forests in Amazonia (as seed dispersal agents, herbivores, predators) but there are relatively few detailed studies from areas that have not been affected by human activities (e.g., hunting, logging). Yet, such information is needed to evaluate effects of humans elsewhere. We used camera traps to sample medium to large-sized terrestrial mammals at a site in lowland forests of eastern Ecuador, one of the most biologically rich areas in the world. We deployed cameras on two study plots in terra firme forest at Tiputini Biodiversity Station. Sixteen cameras were arranged 200 m apart in a 4 × 4 grid on each plot. Cameras were operated for  60 days in January–March, 2014–2017, for a total of 3,707 and 3,482 trap-days on the two plots (Harpia, Puma). A total of 28 species were recorded; 26 on Harpia and 25 on Puma. Number of species recorded each year was slightly greater on Harpia whereas overall capture rates (images/100 trap-days) were higher on Puma. Although most species were recorded on each plot, differences in capture rates meant that yearly samples on a given plot were more similar to each other than to samples on the other plot. Images of most species showed a clumped distribution pattern on each plot; Panthera onca was the only species that did not show a clumped distribution on either plot. Images at a given camera location showed no evidence of autocorrelation with numbers of images at nearby camera locations, suggesting that species were responding to small-scale differences in habitat conditions. A redundancy analysis showed that environmental features within 50 or 100 m of camera locations (e.g., elevation, variation in elevation, slope, distance to streams) accounted for significant amounts of variation in distribution patterns of species. Composition and relative importance based on capture rates were very similar to results from cameras located along trails at the same site; similarities decreased at increasing spatial scales based on comparisons with results from other sites in Ecuador and Peru

    Apparent survival rates of forest birds in eastern Ecuador revisited: improvement in precision but no change in estimates.

    Get PDF
    Knowledge of survival rates of Neotropical landbirds remains limited, with estimates of apparent survival available from relatively few sites and species. Previously, capture-mark-recapture models were used to estimate apparent survival of 31 species (30 passerines, 1 Trochilidae) from eastern Ecuador based on data collected from 2001 to 2006. Here, estimates are updated with data from 2001-2012 to determine how additional years of data affect estimates; estimates for six additional species are provided. Models assuming constant survival had highest support for 19 of 31 species when based on 12 years of data compared to 27 when based on six; models incorporating effects of transients had the highest support for 12 of 31 species compared to four when based on 12 and six years, respectively. Average apparent survival based on the most highly-supported model (based on model averaging, when appropriate) was 0.59 (± 0.02 SE) across 30 species of passerines when based on 12 years and 0.57 (± 0.02) when based on six. Standard errors of survival estimates based on 12 years were approximately half those based on six years. Of 31 species in both data sets, estimates of apparent survival were somewhat lower for 13, somewhat higher for 17, and remained unchanged for one; confidence intervals for estimates based on six and 12 years of data overlapped for all species. Results indicate that estimates of apparent survival are comparable but more precise when based on longer-term data sets; standard error of the estimates was negatively correlated with numbers of captures (rs  = -0.72) and recaptures (rs  = -0.93, P<0.001 in both cases). Thus, reasonable estimates of apparent survival may be obtained with relatively few years of data if sample sizes are sufficient

    Connecting fruit production to seedling establishment in two co-occurring Miconia species: Consequences of seed dispersal by birds in upper Amazonia

    Get PDF
    This study investigated links between seed production by two species of Miconia (Melastomataceae), whose seeds are dispersed by birds, and later stages of recruitment in lowland forests of eastern Ecuador. Seed dispersal and survival in later stages are crucial for understanding and predicting patterns of plant population dynamics as well as for understanding patterns of diversity in tropical forests. A major goal was to determine if the spatial template of seed deposition established by birds predicted probability of recruitment. We used observational and experimental approaches to compare patterns of recruitment in Miconia fosteri and M. serrulata. We calculated probabilities of transition between successive stages of recruitment for each species in three habitats. The number of plants with fruit, number of fruits removed, and, to a lesser extent, patterns of seed deposition varied between species and among habitats, whereas seed survival, germination, and establishment showed little variation among habitats. The location of seed deposition directly influenced the cumulative probabilities of survival. Among-habitat differences in the probabilities of recruitment set by seed deposition were not modified by later stages, although probability of recruitment was 2.5 times higher for M. serrulata than for M. fosteri after 1 year. The more critical stages for recruitment were seed removal and deposition. Our results from multiple life-cycle stages suggest that habitat associations among plants that reach reproductive maturity become established at early life stages and were mostly a consequence of seed dispersal by birds. These results differ from those obtained in temperate zones and suggest fundamental differences in the importance of recruitment processes. Dispersers, such as manakins, play significant roles in recruitment and population dynamics of M. fosteri, M. serrulata and numerous other understory plants of Neotropical forests. Their role in plant recruitment could be much greater than previously considered in megadiverse tropical forests. Thus, loss of dispersers could have long-term and far-reaching implications for maintenance of diversity.Fil: Blendinger, Pedro Gerardo. University of Missouri; Estados Unidos. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; ArgentinaFil: Blake, John. University of Missouri; Estados Unidos. University of Florida; Estados UnidosFil: Loiselle, Bethe A.. University of Missouri; Estados Unidos. University of Florida; Estados Unido
    • …
    corecore