16 research outputs found

    Public T-Cell Receptors (TCRs) Revisited by Analysis of the Magnitude of Identical and Highly-Similar TCRs in Virus-Specific T-Cell Repertoires of Healthy Individuals

    No full text
    Since multiple different T-cell receptor (TCR) sequences can bind to the same peptide-MHC combination and the number of TCR-sequences that can theoretically be generated even exceeds the number of T cells in a human body, the likelihood that many public identical (PUB-I) TCR-sequences frequently contribute to immune responses has been estimated to be low. Here, we quantitatively analyzed the TCR-repertoires of 190 purified virus-specific memory T-cell populations, directed against 21 epitopes of Cytomegalovirus, Epstein-Barr virus and Adenovirus isolated from 29 healthy individuals, and determined the magnitude, defined as prevalence within the population and frequencies within individuals, of PUB-I TCR and of TCR-sequences that are highly-similar (PUB-HS) to these PUB-I TCR-sequences. We found that almost one third of all TCR nucleotide-sequences represented PUB-I TCR amino-acid (AA) sequences and found an additional 12% of PUB-HS TCRs differing by maximally 3 AAs. We illustrate that these PUB-I and PUB-HS TCRs were structurally related and contained shared core-sequences in their TCR-sequences. We found a prevalence of PUB-I and PUB-HS TCRs of up to 50% among individuals and showed frequencies of virus-specific PUB-I and PUB-HS TCRs making up more than 10% of each virus-specific T-cell population. These findings were confirmed by using an independent TCR-database of virus-specific TCRs. We therefore conclude that the magnitude of the contribution of PUB-I and PUB-HS TCRs to these virus-specific T-cell responses is high. Because the T cells from these virus-specific memory TCR-repertoires were the result of successful control of the virus in these healthy individuals, these PUB-HS TCRs and PUB-I TCRs may be attractive candidates for immunotherapy in immunocompromised patients that lack virus-specific T cells to control viral reactivation

    Identification of Functional HLA-A*01 :01-Restricted EBV-LMP2-Specific T-cell Receptors

    Get PDF
    BACKGROUND: Adoptive transfer of genetically engineered T cells expressing antigen-specific T-cell receptors (TCRs), is an appealing therapeutic approach for Epstein-Barr virus (EBV)-associated malignancies of latency type II/III that express EBV-antigens (LMP1/2). Patients who are HLA-A*01:01pos could benefit from such products, since no T cells recognizing any EBV-derived peptide in this common HLA allele have been found thus far. METHODS: HLA-A*01:01-restricted EBV-(LMP2)-specific T-cells were isolated using peptide-MHC-tetramers. Functionality was assessed by production of IFNγ and cytotoxicity when stimulated with EBV-LMP2-expressing cell-lines. Functionality of primary T cells transduced with HLA-A*01:01-restricted EBV-LMP2-specific TCRs was optimized by knocking out the endogenous TCR of primary T cells (ΔTCR) using CRISPR-Cas9 technology. RESULTS: EBV-LMP2-specific T cells were successfully isolated and their TCRs were characterized. TCR gene-transfer in primary T cells resulted in specific peptide-MHC-tetramer binding and reactivity against EBV-LMP2-expressing cell-lines. The mean-fluorescence intensity of peptide-MHC-tetramer binding was increased 1.5-2 fold when the endogenous TCR of CD8pos T cells was knocked out. CD8pos/ΔTCR T cells modified to express EBV-LMP2-specific TCRs showed IFNγ secretion and cytotoxicity towards EBV-LMP2-expressing malignant cell-lines. DISCUSSION: We isolated the first functional HLA-A*01:01-restricted EBV-LMP2-specific T-cell populations and TCRs, which can potentially be used in future TCR gene-therapy to treat EBV-associated latency type II/III malignancies

    High Mutation Frequency of the PIGA

    No full text
    Immunobiology of allogeneic stem cell transplantation and immunotherapy of hematological disease
    corecore