66 research outputs found

    Distribution maps of cetacean and seabird populations in the North‐East Atlantic

    Get PDF
    1. Distribution maps of cetaceans and seabirds at basin and monthly scales are needed for conservation and marine management. These are usually created from standardized and systematic aerial and vessel surveys, with recorded animal den- sities interpolated across study areas. However, distribution maps at basin and monthly scales have previously not been possible because individual surveys have restricted spatial and temporal coverage. 2. This study develops an alternative approach consisting of: (a) collating diverse survey data to maximize spatial and temporal coverage, (b) using detection func- tions to estimate variation in the surface area covered (km2) among these surveys, standardizing measurements of effort and animal densities, and (c) developing species distribution models (SDM) that overcome issues with heterogeneous and uneven coverage. 3. 2.68 million km of survey data in the North-East Atlantic between 1980 and 2018 were collated and standardized. SDM using Generalized Linear Models and General Estimating Equations in a hurdle approach were developed. Distribution maps were then created for 12 cetacean and 12 seabird species at 10 km and monthly resolution. Qualitative and quantitative assessment indicated good model performance. 4. Synthesis and applications. This study provides the largest ever collation and standardization of diverse survey data for cetaceans and seabirds, and the most comprehensive distribution maps of these taxa in the North-East Atlantic. These distribution maps have numerous applications including the identification of im- portant areas needing protection, and the quantification of overlap between vul- nerable species and anthropogenic activities. This study demonstrates how the analysis of existing and diverse survey data can meet conservation and marine management needs.Versión del editor4,7

    Use of Ionic Liquid in Fabrication, Characterization, and Processing of Anodic Porous Alumina

    Get PDF
    Two different ionic liquids have been tested in the electrochemical fabrication of anodic porous alumina in an aqueous solution of oxalic acid. It was found that during galvanostatic anodization of the aluminum at a current density of 200 mA/cm2, addition of 0.5% relative volume concentration of 1-butyl-3-methylimidazolium tetrafluoborate resulted in a three-fold increase of the growth rate, as compared to the bare acidic solution with the same acid concentration. This ionic liquid was also used successfully for an assessment of the wettability of the outer surface of the alumina, by means of liquid contact angle measurements. The results have been discussed and interpreted with the aid of atomic force microscopy. The observed wetting property allowed to use the ionic liquid for protection of the pores during a test removal of the oxide barrier layer

    Cell-Cell Transmission Enables HIV-1 to Evade Inhibition by Potent CD4bs Directed Antibodies

    Get PDF
    HIV is known to spread efficiently both in a cell-free state and from cell to cell, however the relative importance of the cell-cell transmission mode in natural infection has not yet been resolved. Likewise to what extent cell-cell transmission is vulnerable to inhibition by neutralizing antibodies and entry inhibitors remains to be determined. Here we report on neutralizing antibody activity during cell-cell transmission using specifically tailored experimental strategies which enable unambiguous discrimination between the two transmission routes. We demonstrate that the activity of neutralizing monoclonal antibodies (mAbs) and entry inhibitors during cell-cell transmission varies depending on their mode of action. While gp41 directed agents remain active, CD4 binding site (CD4bs) directed inhibitors, including the potent neutralizing mAb VRC01, dramatically lose potency during cell-cell transmission. This implies that CD4bs mAbs act preferentially through blocking free virus transmission, while still allowing HIV to spread through cell-cell contacts. Thus providing a plausible explanation for how HIV maintains infectivity and rapidly escapes potent and broadly active CD4bs directed antibody responses in vivo
    corecore