1,481 research outputs found

    Determination of complex dielectric functions of ion implanted and implantedā€annealed amorphous silicon by spectroscopic ellipsometry

    Get PDF
    Measuring with a spectroscopic ellipsometer (SE) in the 1.8ā€“4.5 eV photon energy region we determined the complex dielectric function (Ļµ = Ļµ1 + iĻµ2) of different kinds of amorphous silicon prepared by selfā€implantation and thermal relaxation (500ā€‰Ā°C, 3 h). These measurements show that the complex dielectric function (and thus the complex refractive index) of implanted aā€Si (iā€aā€Si) differs from that of relaxed (annealed) aā€Si (rā€aā€Si). Moreover, its Ļµ differs from the Ļµ of evaporated aā€Si (eā€aā€Si) found in the handbooks as Ļµ for aā€Si. If we use this Ļµ to evaluate SE measurements of ion implanted silicon then the fit is very poor. We deduced the optical band gap of these materials using the Davisā€“Mott plot based on the relation: (Ļµ2E2)1/3 āˆ¼ (Eāˆ’ Eg). The results are: 0.85 eV (iā€aā€Si), 1.12 eV (eā€aā€Si), 1.30 eV (rā€aā€Si). We attribute the optical change to annihilation of point defects

    Divergence-Free Adaptive Mesh Refinement for Magnetohydrodynamics

    Get PDF
    In this paper we present a full-fledged scheme for the second order accurate, divergence-free evolution of vector fields on an adaptive mesh refinement (AMR) hierarchy. We focus here on adaptive mesh MHD. The scheme is based on making a significant advance in the divergence-free reconstruction of vector fields. In that sense, it complements the earlier work of Balsara and Spicer (1999) where we discussed the divergence-free time-update of vector fields which satisfy Stoke's law type evolution equations. Our advance in divergence-free reconstruction of vector fields is such that it reduces to the total variation diminishing (TVD) property for one-dimensional evolution and yet goes beyond it in multiple dimensions. Divergence-free restriction is also discussed. An electric field correction strategy is presented for use on AMR meshes. The electric field correction strategy helps preserve the divergence-free evolution of the magnetic field even when the time steps are sub-cycled on refined meshes. The above-mentioned innovations have been implemented in Balsara's RIEMANN framework for parallel, self-adaptive computational astrophysics which supports both non-relativistic and relativistic MHD. Several rigorous, three dimensional AMR-MHD test problems with strong discontinuities have been run with the RIEMANN framework showing that the strategy works very well.Comment: J.C.P., figures of reduced qualit

    Texturing of Soy Yoghurt Alternatives: Pectin Microgel Particles Serve as Inactive Fillers and Weaken the Soy Protein Gel Structure

    Get PDF
    Soy-based yoghurt alternatives were highly requested by consumers over the last few years. However, their texture does not always fulfil consumersā€™ demands as such yoghurt alternatives are often perceived as too firm or too soft, sandy, or fibrous. In order to improve the texture, fibres, for example, in the form of microgel particles (MGP), can be added to the soy matrix. MGP are expected to interact with soy proteins, creating different microstructures and, thus, different gel properties after fermentation. In this study, pectin-based MGP were added in different sizes and concentrations, and the soy gel properties after fermentation were characterised. It was found that the addition of 1 wt.% MGP influenced neither the flow behaviour nor the tribological/lubrication properties of the soy matrix, regardless of the MGP size. However, at higher MGP concentrations (3 and 5 wt.%), the viscosity and yield stress were reduced, the gel strength and cross-linking density decreased, and the water-holding capacity was reduced. At 5 wt.%, strong and visible phase separation occurred. Thus, it can be concluded that apple pectin-based MGP serve as inactive fillers in fermented soy protein matrices. They can, therefore, be used to weaken the gel matrix purposely to create novel microstructures

    Apathy, but not depression, is associated with executive dysfunction in cerebral small vessel disease.

    Get PDF
    OBJECTIVE: To determine the prevalence of apathy and depression in cerebral small vessel disease (SVD), and the relationships between both apathy and depression with cognition. To examine whether apathy is specifically related to impairment in executive functioning and processing speed. METHODS: 196 patients with a clinical lacunar stroke and an anatomically corresponding lacunar infarct on MRI were compared to 300 stroke-free controls. Apathy and depression were measured using the Geriatric Depression Scale, and cognitive functioning was assessed using an SVD cognitive screening tool, the Brief Memory and Executive Test, which measures executive functioning/processing speed and memory/orientation. Path analysis and binary logistic regression were used to assess the relation between apathy, depression and cognitive impairment. RESULTS: 31 participants with SVD (15.8%) met criteria for apathy only, 23 (11.8%) for both apathy and depression, and 2 (1.0%) for depression only. In the SVD group the presence of apathy was related to global cognition, and specifically to impaired executive functioning/processing speed, but not memory/orientation. The presence of depression was not related to global cognition, impaired executive functioning/processing speed or memory/orientation. CONCLUSIONS: Apathy is a common feature of SVD and is associated with impaired executive functioning/processing speed suggesting the two may share biological mechanisms. Screening for apathy should be considered in SVD, and further work is required to develop and evaluate effective apathy treatment or management in SVD.This work was supported by a Priority Program Grant from the Stroke Association (TSA PPA 2015-02; www.stroke.org.uk). The BMET Study was supported by a grant from the Stroke Association (TSA2008/10). Valerie Lohner is supported by a Stroke Association/British Heart Foundation Program Grant (TSA BHF 2010/01; www.bhf.org.uk). Rebecca Brookes is supported by a BHF Project Grant (PG/13/30/30005). Recruitment to the BMET Study was supported by the English National Institute of Health Research (NIHR) Clinical Stroke Research Network (www.crn.nihr.ac.uk/stroke). Hugh Markus is supported by an NIHR Senior Investigator award (www.nihr.ac.uk) and his work is supported by the Cambridge University Hospital Comprehensive NIHR Biomedical Research Unit (www.cambridge-brc.org.uk)

    Iterative solution applied to the Helmholtz equation: Complex deflation on unstructured grids

    Get PDF
    Extensions of deflation techniques developed for the Poisson and Navier equations (Aubry et al., 2008; Mut et al., 2010; Löhner et al., 2011; Aubry et al., 2011) [1], [2], [3], [4] are presented for the Helmholtz equation. Numerous difficulties arise compared to the previous case. After discretization, the matrix is now indefinite without Sommerfeld boundary conditions, or complex with them. It is generally symmetric complex but not Hermitian, discarding optimal short recurrences from an iterative solver viewpoint (Saad, 2003) [5]. Furthermore, the kernel of the operator in an infinite space typically does not belong to the discrete space. The choice of the deflation space is discussed, as well as the relationship between dispersion error and solver convergence. Similarly to the symmetric definite positive (SPD) case, subdomain deflation accelerates convergence if the low frequency eigenmodes are well described. However, the analytic eigenvectors are well represented only if the dispersion error is low. CPU savings are therefore restricted to a low to mid frequency regime compared to the mesh size, which could be still relevant from an application viewpoint, given the ease of implementation

    Simulation of the magnetosphere with a new three dimensional MHD code and adaptive mesh refinement: Preliminary results

    Get PDF
    We present the first results from a new unstructured mesh three dimensional finite element MHD code which uses dynamic solution-adaptive mesh refinement in a manner similar to our two dimensional finite element MHD code /31/. The problem being considered here is the interaction of the solar wind with the earth's magnetosphere, using a three-dimensional Cartesian approximation. Our results strongly indicate that such adaptive mesh techniques have the ability to resolve structures in the three dimensional MHD flow field that would otherwise be possible only with orders of magnitude greater cost and that are most likely beyond the capability of present supercomputers
    • ā€¦
    corecore