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a b s t r a c t

Extensions of deflation techniques developed for the Poisson and Navier equations (Aubry et al., 2008;
Mut et al., 2010; Löhner et al., 2011; Aubry et al., 2011) [1–4] are presented for the Helmholtz equation.
Numerous difficulties arise compared to the previous case. After discretization, the matrix is now inde-
finite without Sommerfeld boundary conditions, or complex with them. It is generally symmetric com-
plex but not Hermitian, discarding optimal short recurrences from an iterative solver viewpoint (Saad,
2003) [5]. Furthermore, the kernel of the operator in an infinite space typically does not belong to the
discrete space. The choice of the deflation space is discussed, as well as the relationship between disper-
sion error and solver convergence. Similarly to the symmetric definite positive (SPD) case, subdomain
deflation accelerates convergence if the low frequency eigenmodes are well described. However, the ana-
lytic eigenvectors are well represented only if the dispersion error is low. CPU savings are therefore
restricted to a low to mid frequency regime compared to the mesh size, which could be still relevant from
an application viewpoint, given the ease of implementation.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The Helmholtz equation is the archetype of the wave equation
in the time domain. Applications of this equation are numerous
and include acoustic scattering, geophysical seismic imaging, wire-
less communications. Due to this vast area of applications, a sub-
stantial effort has been invested in their numerical resolution.
After discretization, these methods give rise to large, possibly
sparse, matrices and their inversion may be time consuming. For
large three dimensional problems, iterative methods in a broad
sense (geometric or algebraic multigrid, iterative solvers, domain
decomposition methods) represent the methods of choice due to
memory (and possibly CPU) requirements. However their robust-
ness is often criticized beyond the elliptic case. The main motiva-
tion of this work is given by the challenge of solving iteratively
the coupled elastodynamic acoustic problem. The first building
block for the elastic part consisted in extending the results of the
scalar Poisson solver to the static elastic system. This was pre-
sented in [4]. The present work constitutes the first departure from
the symmetric definite positive (SPD) case for scalar equation. In
the literature, the Helmholtz equation has been mainly studied
from two apparently different viewpoints, either from a discretiza-
ll rights reserved.
tion and accuracy viewpoint, or from an algebraic solver viewpoint.
However, in both approaches plane waves, which are solutions of
the Helmholtz equation in free space play a special part.

From an accuracy viewpoint, the oscillating nature of the
Helmholtz equation gives rise to the famous pollution effect for
high wave numbers [6–9]. Beside refining the mesh in the Finite
Element h-refinement approach and increasing the polynomial or-
der in the p-refinement paradigm, numerous methods have been
designed to stabilize the Helmholtz equation. The Generalized
Finite Element Method (GFEM) [10] modifies a bilinear stencil to
have minimum pollution effect by minimizing the distance be-
tween the zeros of the discrete symbol and the one of the contin-
uous symbol. The Partition of Unity Method (PUM) [11], uses
analytical functions in the shape function definition. Extensions
in three dimensions are presented in [12] in a Finite Element
context and [13] in a Boundary Element context. The ultraweak
method [14] relies on test functions that are solutions of the ad-
joint problem. The least square method [15] uses plane waves or
Bessel functions in a discontinuous manner inside each element.
The Galerkin Least Square (GLS) method [16] intends to stabilize
the Helmholtz equation by adding consistently new weighted
terms. The Residual Free Method (RFM) [17] relies on a bubble
which verifies the analytical solution of the Helmholtz equation
inside each element. A discontinuous Galerkin method [18]
enriches the classical polynomial space with plane waves, and con-
tinuity is enforced weakly through Lagrange multipliers. The
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Discrete Singular Convolution (DSC) [19] method applies singular
convolution with a special kernel for high wave numbers. The
residual based method [20] belongs to the variational multiscale
methods but includes the residual on inter-element boundaries.
As underlined, most of these methods rely on a continuous or dis-
continuous introduction of plane waves to improve the classical fi-
nite element discretization.

From an algebraic solver viewpoint, numerous techniques have
also been attempted, including preconditioning, geometric and
algebraic multigrid, and domain decomposition methods. A re-
view is given by Erlangga in [21]. For the first class of methods,
Magolu Monga Made et al. [22,23] proposes to use an imaginary
perturbation of the original matrix as preconditioner. A large class
of preconditioners begins with the work in Bayliss et al. [24],
where the normal equation is solved with a symmetric successive
over relaxation (SSOR) preconditioner relying only on the discrete
Laplacian part of the Helmholtz operator. The preconditioner is
now symmetric positive definite and a few sweeps of a multigrid
solver may be used. Later, Laird and Giles [25] add a mass matrix
part in the preconditioner while the mass matrix is associated
with a negative sign in the original equation, and do not include
boundary conditions for this matrix. Recently, Erlangga et al.
[26,27] add a complex shift for the mass matrix, still allowing
the possibility of a multigrid solve for the the fast inversion of
the preconditioner, as shown in an unstructured context by Air-
aksinen et al. [28]. Bollhöfer et al. [29] present an algebraic mul-
tilevel preconditioner in heterogeneous media. Finally, Osei-
Kuffuor and Saad [30] combine imaginary diagonal shifts with
an algebraic recursive multilevel preconditioner. Recently, defla-
tion has been applied to the Helmholtz equation discretized by
an Integral Formulation [31]. The deflation space is composed of
the eigenvectors of a coarse grid operator interpolated on the fine
grid. It is clearly shown that deflation may improve drastically
convergence, and as a by product, demonstrates the weak non
normality of the Helmholtz equation [32]. However, the coarse
mesh size presented is of the order of 40 percent of the size of
the fine mesh, which is not affordable for large problems. Regard-
ing multigrid techniques, a major breakthrough comes from
Brandt and Livshits [33–35]. There are at least two reasons for
the bad convergence of standard multigrids for the Helmholtz
equation. First, standard smoothers diverge due to the non SPD
behavior of the operator. Secondly, due to the oscillatory nature
of the Helmholtz solution, standard restriction operators put a
heavy constraint on the size of the coarse grid. To alleviate the lat-
ter major drawbacks, exponential restriction is performed, and
only the smooth part of the solution is transfer to the ray grids,
where it is solved efficiently. A similar approach is followed in
Lee et al. [36] for a first order system least-squares formulation.
Kim and Kim [37] use a Gauss Seidel (GS) or Conjugate Gradient
for the Normal equation (CGNR) as a smoother. The large coarse
grid problem is solved by a domain decomposition method. Elman
et al. [38] use GMRES as a smoother in an outer flexible loop for
robustness. Another approach is proposed in Vanek et al. [39],
where aggregation is first performed to obtain a coarse level. Rely-
ing on the free space solution of the Helmholtz equation, a tenta-
tive prolongation is then build and smoothed through a
polynomial matrix iteration, whose main aim is to minimize the
energy of the columns of the prolongation. Oscillatory functions
are interpolated with a constant value and with their gradients,
as they do not belong exactly to the discrete space. As a final re-
mark on multigrids relying on exponential interpolation, only
two dimensional examples with very simple geometries have
been shown to illustrate their numerical performances. Domain
decomposition methods have also been applied to the Helmholtz
equation by Farhat et al. for continuous [40] and discontinuous
discretizations [41] relying on plane waves for the Lagrange mul-
tiplier space as well as for the primary variable.

It is therefore obvious that plane waves play a special part in the
numerical resolution of the Helmholtz equation, as much from an
accuracy as from an efficiency viewpoint. The shift produced by the
wave number in the Laplacian spectrum implies that Laplacian
eigenmodes associated with higher and higher eigenvalues become
low energy modes impeding convergence. Furthermore, as noted
in [36], though not from an algebraic viewpoint, the density of
these modes increases with the wave number, as the Laplacian
spectrum is much denser at its upper end. As plane waves do not
belong to low order discretization, it may be foreseen that they will
approximate well the low energy modes only for low to mid
frequencies. The dispersion induced by the discretization will cre-
ate a larger mismatch as the wave number increases.

In this paper, deflation applied to the Helmholtz equation is
presented. Deflation has been shown to possess various computa-
tional advantages compared to other algebraic solvers for large
unstructured meshes [1–4]. Whereas the multigrid approach gives
a sound basis to tackle the problem, the geometric multigrid hier-
archy is awkward to treat in an unstructured context with moving
bodies, and the algebraic set up is slow. As noted in [38], the wave
ray multigrid is ‘‘considerably more difficult to implement’’ than
the multigrid proposed in the latter paper, even though it may
be more efficient. It was hoped that deflation may achieve this effi-
ciency in a three dimensional context with the ease of implemen-
tation of the deflation technique. However, this aim is only
partially met. After this introduction, the deflation technique is
reviewed in Section 2, and differences between the SPD and the
non SPD case are highlighted. The complex deflated GMRES algo-
rithm is recalled. It will be the method of choice for the next sec-
tion as the Helmholtz equation gives rise to a symmetric
complex but non Hermitian matrix. The Helmholtz equation is
then presented in Section 3. Deflation applied to the discrete Helm-
holtz equation is considered. Finally, numerical results are pro-
vided in Section 4.
2. Complex deflation

In this section, the complex deflated GMRES used in this paper
is presented. First, deflation applied to iterative solvers is suc-
cinctly reviewed. The Hermitian case is then recalled, followed
by the non Hermitian case. Finally, the complex deflated GMRES
is derived.

2.1. Deflation applied to iterative solvers

Deflation is an old and common technique in iterative solvers
for eigenvalues [42,43]. In his seminal paper [44], Nicolaides accel-
erates an iterative solver for symmetric positive definite matrices,
the widely utilized preconditioned conjugate gradient (PCG) [45],
through a deflation technique (see [1] for other references). In a
non symmetric context, Morgan [46] considers deflation to
improve the GMRES restart. More recently, deflation has been
extended to non symmetric solvers with success in [47,48]. The de-
flated preconditioned GMRES is at the crossroads of various itera-
tive solvers for large matrices such as multigrid, either geometric
or algebraic, domain decomposition, and of course Krylov subspace
methods, as all these methods may be interpreted as projection
methods [49,5,50]. Even though the core algorithm is constituted
by a Krylov iterative solver, its main aim is to remove from the
residual eigenvector components that are difficult to remove by
standard iterative solvers. Convergence of GMRES for symmetric
positive definite matrices can be shown to strongly rely on the con-
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dition number j of the matrix [5]. Even though GMRES conver-
gence is much more complex for the general case [51,32], and
may strongly depend on the conditioning of the eigenbasis, it has
been repeatedly reported that removing eigenmodes associated
with low eigenvalues may improve convergence [46,52,53]. From
a practical viewpoint, modes associated with low eigenvalues
should be identified, either analytically or algebraically, and should
be well represented in the deflated subspace. Compared to a mul-
tigrid approach, the deflated subspace plays the role of the prolon-
gation in a two level coarse grid correction. The use of zero energy
modes in a multigrid context is discussed in [54], but was already
noted in [55]. In [1], the deflated subspace was constructed by sub-
domain agglomeration on the mesh to try to represent constant
modes in each subdomain, as constant modes belong to the kernel
of the continuous operator. Subdomain agglomeration or plain
aggregation has been used since the fifties (see [56] p. 68, [57]
and references therein) in economic modeling and was also pres-
ent in the original paper of Nicolaides [44].

2.2. Deflation for Hermitian matrices

For Hermitian matrices, there are many ways of deriving the
deflated conjugate gradient [44,58,59,1]. Here, the approach of
[59] is followed as it is more easily extended to the non Hermitian
case. Let us suppose the algebraic system to be solved reads:

Ax ¼ b ð2:1Þ

where A is a square matrix and b the right hand side. Given a defla-
tion space W constituted by to the modes of the residual to be
removed, let us define the projector P as:

P ¼ I� AWðWT AWÞ�1WT ð2:2Þ

P is an A�1-orthogonal projector onto W? along span{A W} as:

ðPV;AWÞA�1 ¼ ðPV;WÞ ¼ ðV;PT WÞ ¼ 0 8V ð2:3Þ

Its transpose is:

PT ¼ I�WðWT AWÞ�1WT A ð2:4Þ

and is an A-orthogonal projector onto W?A along span{W} as:

ðPT V;WÞA ¼ ðAPT V;WÞ ¼ ðV;PAWÞ ¼ 0 8V ð2:5Þ

It is easily verified that P and PT are projectors, as:

P2 ¼ P ð2:6Þ

As A is symmetric, the following relation holds true:

APT ¼ PA ð2:7Þ

The solution x is therefore obtained as [60]:

x ¼ PT xþ ðI� PTÞx ¼ PT x1 þ x2 ð2:8Þ

with:

PT x1 ¼ PT x ð2:9Þ

such that:

PAx1 ¼ Pb ð2:10Þ

and:

x2 ¼ ðI� PTÞx ¼WðWT AWÞ�1WT b ð2:11Þ

In details, x2 is computed as:
WT AWl ¼WT b ð2:12Þ

and

x2 ¼Wl ð2:13Þ

In order to obtain x; x1 is multiplied by PT and is added to x2 to
form the solution.

2.3. Deflation for non Hermitian matrices

For the non Hermitian case, some modifications must be con-
ducted. A new projector Q must be defined as:

Q ¼ I�WðXAWÞ�1XA ð2:14Þ

where X is another subspace of appropriate dimensions, which
would ideally be composed of the left eigenvectors, as commented
in the next section. The projector P remains the same, apart from
the introduction of X:

P ¼ I� AWðXAWÞ�1X ð2:15Þ

As A is not Hermitian, Eq. (2.7) does not hold anymore. However the
following relation substitutes it:

AQ ¼ PA ð2:16Þ

The solution x is obtained as [47]:

x ¼ Qxþ ðI� Q Þx ¼ Qx1 þ x2 ð2:17Þ

with:

Qx1 ¼ Qx ð2:18Þ

such that:

PAx1 ¼ Pb ð2:19Þ

and:

x2 ¼ ðI� Q Þx ¼WðXAWÞ�1Xb ð2:20Þ

In details, x2 is computed as:

XAWl ¼ Xb ð2:21Þ

and

x2 ¼Wl ð2:22Þ

In order to obtain x; x1 is multiplied by Q and is added to x2 to form
the solution, similarly to the Hermitian case.

2.4. The deflated GMRES algorithm

As a choice of iterative solver, the classical GMRES algorithm
has been chosen [61]. It consists in building a basis for the Krylov
subspace by the Arnoldi process and solving the minimizer of the
residual on this subspace. It uses Givens rotations for the rank
one update of the Hessenberg matrix to convert it into an upper tri-
angular matrix. The solution to the linear system Ax ¼ b is sought
as:

x ¼ x0 þ Vmy ð2:23Þ

where Vm is a subspace of dimension m where the solution is
sought, so that:

b� Ax ¼ b� Aðx0 þ VmyÞ ð2:24Þ
¼ r0 � AVmy ð2:25Þ
¼ bv1 � Vmþ1Hmy ð2:26Þ
¼ Vmþ1ðbe1 �HmyÞ ð2:27Þ
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where H is an upper Hessenberg matrix, r0 is the initial residual, and
b the norm of the first residual. The GMRES approximation is de-
fined as:

x ¼ x0 þ Vmym ð2:28Þ

with the constraint that:

ym ¼ argminkbe1 �Hmyk2 ð2:29Þ

For the complex version, the restarted algorithm reads [5,62]:

Algorithm 1. Given x:

1: while (not converged) do
2: x0 ¼ x
3: r ¼ b� Ax
4: b ¼ krk2; v1 ¼ r=b
5: for i ¼ 1 to m do
6: w ¼ Avi

7: for k ¼ 1 to i do
8: hk;i ¼ vT

k w; w ¼ w� hk;ivk

9: end for
10: hiþ1;i ¼ kwk2; viþ1 ¼ w=hiþ1;i

11: if (converged) then
12: exit
13: end if
14: end for
15: compute the minimizer of kbe1 �Hyk2
16: x ¼ x0 þ Vy
17: if (converged) exit
18: end while

Compared to the real case, the complex GMRES uses a complex
scalar product, and rotations have to be modified, as commented in
[5,62]. Following Vuik’s approach, the GMRES algorithm applied to
PAx ¼ Pb reads:

Algorithm 2. Given x:

1: while (not converged) do
2: x0 ¼ x
3: r ¼ Pb� PAx0

4: b ¼ krk2; v1 ¼ r=b; ~b ¼ be1

5: for i ¼ 1 to m do
6: w ¼ Aðvi �Wl) where XAWl ¼ XAvi

7: !Same as before
8: end for
9: end while

However, the final unknown is given by:

xf ¼ðI�Q ÞxþQx ð2:30Þ
¼WðXAWÞ�1Xbþx�WðXAWÞ�1XAx ð2:31Þ
¼WðXAWÞ�1Xbþx0þVmy�WðXAWÞ�1XAx0

�WðXAWÞ�1XAVmy ð2:32Þ
¼ x0þWðXAWÞ�1Xr0þ ~Vmy ð2:33Þ
¼ ~x0þ ~Vmy ð2:34Þ

where:

~Vm ¼ Vm �WðXAWÞ�1XAVm ð2:35Þ

It is then possible to modify the algorithm to obtain a more compact
version:
Algorithm 3. Given x:

1: while (not converged) do
2: x�1 ¼ x
3: r ¼ Pb� PAx�1

4: ¼ r�1 � AWl
5: ¼ b� Ax0 where XAWl ¼ Xr�1, r�1 ¼ b� Ax�1 and

x0 ¼ x�1 þWl
6: b ¼ krk2; v1 ¼ r=b; ~b ¼ be1

7: for i ¼ 1 to m do
8: w ¼ Aðvi �Wl) where XAWl ¼ XAvi

9: !Same as before
10: end for
11: for k ¼ nr � 1 to 1 do

12: yk ¼ ð~bk �
Pnr

i¼kþ1rk;iyiÞ=rk;k

13: end for
14: z ¼ Vy

15: x ¼ x0 þ z�WðXAWÞ�1XAz
16: if (converged) exit
17: end while
3. Deflation applied to the Helmholtz equation

In this section, the deflated complex GMRES is applied to the
Helmholtz equation. First, the equation is recalled, along with its
boundary conditions. Then, some spectral properties of the discrete
system are commented to better understand the behavior of the
solver. The deflation space is presented thereafter. Finally, some
possible discrete improvements are discussed compared to the ba-
sic version.

3.1. The Helmholtz equation

The Helmholtz equation is derived from the linearized equa-
tions for compressible flows [63]. For a bounded domain X with
boundary C, it reads:

�Du� k2u ¼ 0 in X ð3:1Þ

@u
@n
þ bu ¼ g on CR ð3:2Þ

u ¼ u0 on CD ð3:3Þ

where k is the wave number:

k ¼ x
c

ð3:4Þ

and x is the studied frequency, c is the fluid velocity, n is the sur-
face normal pointing outwards and b is a complex number. CD is the
part of the boundary where the Dirichlet boundary condition
applies and CR is the part of the boundary where Neumann or Robin
boundary conditions applies. For the former, b ¼ 0 and for the latter
b ¼ �ik. Eq. (3.2) for Robin boundary conditions is an approxima-
tion of the Sommerfeld boundary condition:

lim
r!1

r
d�1

2
@u
@r
� iku

� �
¼ 0 ð3:5Þ

where d is the space dimension. Supposing Eq. (3.1) is discretized
with finite differences or low order finite elements with lumped
mass matrix, it is clearly seen that the mass term adds a negative
contribution to the diagonal, which may rise difficulties for iterative
methods. The matrix is symmetric but indefinite without Sommer-
feld boundary conditions. It is symmetric complex when the
Sommerfeld boundary conditions are used. After discretization,
the algebraic system reads:
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ðK� k2M� ikMbÞu ¼ f ð3:6Þ

where K is the Laplacian matrix, M is the mass matrix, Mb is the
boundary mass matrix where the Robin boundary condition applies,
and f is given by the Neumann boundary condition and possible
external volume forces.

3.2. Spectral properties of the discrete Helmholtz equation

From a discrete spectral viewpoint, the eigenvalues of the dis-
crete second order one dimensional finite difference Laplacian with
homogeneous Dirichlet boundary conditions on a unit length do-
main are [5,64]:

ki ¼
2

h2 1� cos
ip

N þ 1

� �� �
ð3:7Þ

For SPD matrices, the convergence of the iterative solver is related,
in particular, to the condition number:

j2ðAÞ ¼ kAk2kA
�1k2 ¼

kmax

kmin
ð3:8Þ

Therefore, if the next eigenvalue kminþ1 after kmin is such that the ra-
tio kmax=kminþ1 is much smaller than the condition number of A, the
removal of kmin will lead to an increase speed in convergence. Equiv-
alently, it means that convergence will speed-up if the ratio
kminþ1=kmin is large. Fig. 3.1 displays the ratio kiþ1=ki for N ¼ 105. It
is clearly seen that the largest ratio occurs for the smallest eigen-
values, meaning that removal of a few eigenvalues will have a dras-
tic effect. This explains the drastic improvement due to deflation
where it is not necessary to treat all the spectrum, as a multigrid
would do. Furthermore, this effect is stronger when the dimension
increases as illustrated in Fig. 3.3. For a one dimensional operator,
the eigenvalues are evenly distributed from the smallest to the larg-
est, while as the dimension increases, the medium part of the spec-
trum increases. Therefore the gains of removing the smallest
eigenvalues are still larger in three dimensions as they are more
scattered at both ends of the spectrum.

For the one dimensional finite difference Helmholtz operator
with homogeneous Dirichlet boundary conditions on a unit length
domain, the eigenvalues are given by [38]:
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Fig. 3.1. Eigenvalue ratio for successive eigenvalues of the Laplacian operator. The high
removing the lowest eigenvalues are high.
ki ¼
2

h2 1� cos
ip

N þ 1

� �� �
� k2 ð3:9Þ

By imposing the engineering constraint of having ten mesh points
per wavelength, namely:

kh ¼ 2p
10

ð3:10Þ

and using the relationship:

h ¼ 1
N þ 1

ð3:11Þ

one obtains:

ih ¼ 0:2 ð3:12Þ

which provides an estimate of the number of negative eigenvalues
on the finest grid. As the mesh is refined, more and more negative
eigenvalues appear in the system for the given constraint. Fig. 3.2
displays the function kiþ1=ki for N ¼ 102. It is clearly seen that this
ratio is highest for the eigenvalues close to the wave number
squared. However, the ratio of the largest to the smallest absolute
eigenvalue is not a factor influencing convergence for non SPD
matrices. This is illustrated in Tables 3.1 and 3.2 for a three dimen-
sional cavity example presented below with Neumann and Robin
boundary conditions respectively, where the iteration number has
been reported against the ratio of the largest to the smallest eigen-
value in absolute value. The eigenvectors associated with the lowest
eigenvalues have been displayed for both cases on Figs. 3.4 and 3.5
respectively. As expected, they become more and more oscillatory
as the wave number increases

3.3. Plane waves

For the deflation to be effective, modes associated with low
eigenvalues should be identified, either analytically or algebrai-
cally, and should be well represented in the deflated subspace. A
natural extension for deflation techniques to the Helmholtz equa-
tion relies on introducing plane waves in the deflation space.
Therefore W, the deflation space, is given by:

Wk
j ¼ eik�x ð3:13Þ
 60  80  100
lue number

lambda(i+1)/lambdai

est ratio occurs at the low end of the spectrum. Therefore, the gains obtained by
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Table 3.1
GMRES iteration number and condition number with various wave numbers for the
cavity example with Neumann boundary conditions. The condition number does not
drive convergence.

GMRES ite. Condition number jkmaxj=jkminj (103)

k = 0 308 26
k = 1 322 44
k = 2 339 42
k = 4 368 18
k = 8 521 44
k = 16 666 22

Table 3.2
GMRES iteration number and condition number with various wave numbers for the
cavity example with Robin boundary conditions. Again, the condition number is not a
relevant factor to convergence.

GMRES ite. Condition number jkmaxj=jkminj (103)

k = 0 307 26
k = 1 315 32
k = 2 334 44
k = 4 353 8
k = 8 493 83
k = 16 668 4
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Fig. 3.2. Eigenvalue ratio for successive eigenvalues in absolute value of the Helmholtz operator. The highest ratio occurs for eigenvalues close to the wave number squared.
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Fig. 3.4. Eigenmodes associated with lowest eigenvalue for the cavity example at various wave numbers with Neumann boundary conditions.

Fig. 3.5. Eigenmodes associated with lowest eigenvalue for the cavity example at various wave numbers with Robin boundary conditions. The condition number is not a
relevant factor to convergence.
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where a node M of coordinates x belongs to group j with direction k.
The small system to be solved after an agglomeration of size
ngroup has dimension ngroup � ndir where ndir is the number
of directions chosen for the plane waves. Compared to the scalar La-
place deflation case, the small subsystem has been multiplied by
ndir. This deflation space is obviously reminiscent from the work
in [33,39].

If the definition of W is rather straightforward, the definition of
X is not. In the three references relying on a multigrid approach
mentioned in the introduction, namely [33,36,39], differences do
appear for the definition of the restriction operator, played by X
in a deflation context as seen in Eq. (2.14). In [39], the symmetric
approach is applied to the Helmholtz equation. In [36], the restric-
tion operator is defined as the adjoint of the interpolation operator,
therefore suggesting the conjugate transpose for X. Relying on
exponential interpolation allows to define a prolongation operator
that trivially transfers the nearly singular eigenvectors from the
coarse grid to the fine grid [50] but the lack of Hermitian character
of the Helmholtz operator does not allow for an easy restriction.
Finally, [33] certainly provides the answer for the restriction
operator in what is called the separation procedure. Given the
residual after a classical V cycle, problematic components have
the form:

r ¼
X

k

rkeik�x ð3:14Þ

The iterative process will be much more efficient at reducing the
geometric smooth part rk than the highly geometric oscillatory
component, or algebraic smooth part rkeik�x. Obtaining the value rk

is equivalent to perform a convolution on the complete residual,
which physically illustrates the non Hermitian behavior of the
Helmholtz operator, as it would require building an orthogonal ba-
sis of the oscillatory components, which is not WT . Therefore, the
residual is multiplied by e�ik�x so that its new value is:

r ¼ rk þ
X
j–k

rjeiðjþkÞ�x ð3:15Þ

Now a full weighting is applied to simulate the action of a low pass
filter in order for rk to be extracted from r. It seems therefore that a
conjugate transpose would be more appropriate than only the
transpose, even though the convolution is only approximated with
the conjugate transpose. As the Helmholtz operator is not Hermi-
tian, there is no necessity to use X ¼WT as the restriction operator,
as the eigenvectors do not form an orthogonal basis with respect to
the complex scalar product.

A strict application of the non Hermitian deflation would re-
quire X to be composed of the left eigenvectors, relying on the well
known Hotelling deflation [42], in order to leave the part of the
spectrum and the eigenvectors that do not belong to the deflation
unchanged. As mentioned before, the deflation projector reads:

P ¼ I� AWðXAWÞ�1X ð3:16Þ

In a matrix by vector multiplication, the action of the operator PA
will be applied to the Krylov basis. Therefore, considering the resid-
ual r ¼ b� Ax, we obtain:

PAr ¼ Ar� AWðXAWÞ�1XAr ð3:17Þ

Supposing W is composed of the right eigenvectors and X of the left
eigenvectors, we have the relation AW ¼WD and XW ¼ I, where D
is the diagonal matrix composed of the eigenvalues, and the left and
right eigenvectors have been normalized. Writing a modal decom-
position of the initial residual, we obtain:

PAr ¼ Ar�
X

i

AWðXWDÞ�1XAaiwi ð3:18Þ

Therefore:
PAr ¼ Ar�
X

i

AWðDÞ�1Xkiaiwi ð3:19Þ

And:

PAr ¼ Ar�
X

i

Aaiwi ð3:20Þ

Optimally, the small matrix inversion should only provide a scaling
by the eigenvalues and, as said before, the application of X should
provide the value of the components of the residual with respect
to their modal decomposition.

Ultimately, from a practical viewpoint, there are no physical
reasons not to treat the propagation vectors in W in both directions
so that WT AW and WT AW applied to opposite directions will gen-
erate the same coarse operator anyway. Therefore, in this paper,
the choice X ¼W has been followed for efficiency and storage
purposes.

3.4. Discrete comparisons

As already pointed out, there are numerous difficulties in solv-
ing the Helmholtz equation. One of them lies in the fact that expo-
nential oscillatory functions do not belong to the discrete space,
contrarily to the symmetric positive definite case, where constant
functions do belong to the discrete space. Another difficulty is re-
lated to the increasing number of problematic eigenvalues with
the wave number.

Regarding the pollution effect and considering the one dimen-
sional finite element stencil, the characteristic equation reads
[16,63]:

ð2aþ 1Þx2 þ ð2ð4a� 1ÞÞxþ ð2aþ 1Þ ¼ 0 ð3:21Þ

with:

a ¼ ðkhÞ2

12
ð3:22Þ

A solution for an outgoing wave reads:

x1 ¼
ð1� 4aÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12aða� 1Þ

p
2aþ 1

ð3:23Þ

The dispersion for the discrete wave number reads:

khh ¼ arccos
1� 4a
1þ 2a

ð3:24Þ

Or:

kh ¼ k� k3h2

24
þ Oðk5h4Þ ð3:25Þ

The last equation shows that discrete waves are dispersive, but
more importantly that discrete wave numbers are slowed down
as k increases. This argument has been used to try to stabilize the
standard FEM [16]. If k is given by the problem at hand, it may be
interesting to use knum, a numerical wave number with a slightly
lower magnitude for interpolation, and coarse grid operator evalu-
ation. An improvement in convergence would then show that the
discrete operator has substantially moved from the continuous
operator. Some tests were conducted in this direction leading to
minor improvements. The main reason is due to the fact that in
higher dimensions, the discrete eigenvectors depart from their con-
tinuous counterpart in a much more complex manner.

Finally, it is interesting to compare the coarse grid operator
obtained by the deflation coarse grid operator, and the wave-ray
multigrid. In the former, the coarse grid correction is given by
the operator XAW which, for a set of n directions ndir, takes into
account the coupling between directions. The size of the small ma-
trix is therefore the size of the graph of the subdomains multiplied
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by ndir 2. Clearly, the overhead is noticeable for a large set of
directions. In the latter, the operator derived for each direction is
solved at each ray level, without taking the couplings into account.
However, experiments with deflation revealed that removing the
coupling in the direct solve was affecting negatively and in a sub-
stantial manner the convergence rate.

4. Numerical examples

In this section, numerical examples are studied to support the
theoretical arguments presented before, and illustrate the pro-
posed method. First, a simple example with analytical solution is
thoroughly studied. Then realistic examples are presented. Con-
trarily to the SPD case, numerous parameters influence the result.
Apart from the group number for the agglomeration procedure, the
direction number per group has to be chosen. Due to the non Her-
mitian character, the restart parameter should also be determined
in the GMRES procedure for realistic examples.

4.1. Square cavity

This example has been extracted from [24]. It allows to compare
the computed solution to an analytical solution with and without
the approximated Sommerfeld condition. The square is given by
½0 : 1� � ½0 : 1�, and has been slightly extruded in the third direction
to run in 3D. The analytical solution is:

uðx; yÞ ¼ ei
ffiffiffiffiffiffiffiffiffiffi
k2�p2

4

p� �
x cos

p
2

y ð4:1Þ

At the top of the cavity, u is set to 0. At the bottom, a Neumann
boundary condition is set so that @u

@n ¼ 0. In the first configuration, @u
@n

is set to the analytical value on both sides. In the second configu-
ration, the @u

@n ¼ iku is set on the right boundary. Fig. 4.1 illustrates
the boundary conditions. A nice feature of this example relies on
the fact that the analytical solution is in fact a sum of two waves:

uðx; yÞ ¼ ei
ffiffiffiffiffiffiffiffiffiffi
k2�p2

4

p� �
x eip2y þ e�ip2y
� �

2
ð4:2Þ

or:

uðx; yÞ ¼ 1
2

ei
ffiffiffiffiffiffiffiffiffiffi
k2�p2

4

p
xþp

2y
� �

þ 1
2

ei
ffiffiffiffiffiffiffiffiffiffi
k2�p2

4

p
x�p

2y
� �

ð4:3Þ

Therefore, the two wave numbers are given by:

k1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � p2

4

q
p
2

0
@

1
A; k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � p2

4

q
� p

2

0
@

1
A ð4:4Þ
Fig. 4.1. Cavity example.
Supposing the exponential functions would belong to the discreti-
zation space, the solver would converge in one iteration providing
that the deflated space is composed of two waves with exactly these
directions. Unfortunately, the exponential does not belong to the
discrete space. This is a major difference with the Poisson equation
where the low energy modes are the constant one, which as com-
mented before, do belong to the discrete space. Furthermore, a gen-
eral solution will typically be composed of more waves, where each
direction is generally unknown.

The solution is displayed on Fig. 4.2 for different wave numbers.
It is clearly seen that as k increases, both wave directions align
more and more along the x abscissa, as suggested by Eq. (4.4). Note
that for k ¼ 1, evanescent waves are present in the solution while
the solution is purely oscillatory for higher values of k. The mesh
contains 23 � 103 points and 70 � 103 elements.

4.1.1. Convergence of Robin and Neumann bc with conjugate
transpose

The iterations necessary to converge with a relative tolerance of
10�5 are given in Fig. 4.3 without deflation, with deflation com-
posed by the two exact waves and one group, and by only one of
these waves and one group. The case with one wave was added
to show that the increase in the iteration count for the case of
the two exact waves is not due to the worse and worse collinearity
of the two waves. Compared to the symmetric definite positive
case, a very annoying phenomenon appears, as subdomain defla-
tion may actually worsen convergence. The insertion of the two
waves gives rise to a small 2 by 2 system to be solved. It is only per-
formed for illustration purposes as the dimension of the deflated
space is obviously too small regarding efficiency. However, this
should give the exact solution in one iteration if the separation pro-
cess or convolution would be perfect and the exponential would
describe exactly the discrete eigenvector. It is clear that as the
wave number increases, the exponential moves away from a repre-
sentation of a discrete eigenmode. The decrease in iteration counts
for small to medium values is noticeable though. For this small sys-
tem, the restart of GMRES was not used in order to simplify the
analysis. Note the increase in the iteration count for this simple
example. GMRES needs 10 percent of the point number to converge
for k = 32, which is clearly prohibitive for large problems. It clearly
illustrates the difficulties that iterative methods meet with indefi-
nite operators.

The same experience is conducted with Robin boundary condi-
tions at the right boundary. Iterations counts are reported on
Fig. 4.4. From an iteration viewpoint, as the left boundary is real
valued, complex values will not appear in the inner iterations of
GMRES until the number of iterations equals the graph depth to
come from the left side to the right side. Larger iteration counts
can therefore be forecast for Robin boundary conditions.

4.1.2. Convergence of Robin and Neumann bc with transpose only
Next, X ¼WT , is replaced by X ¼WT to study the effects of the

conjugacy and to validate the assumptions made on the separation
process. The iterations necessary to converge with a tolerance of
10�5 are given in Fig. 4.5 without deflation, with deflation com-
posed by the two exact waves and one group, and by only one of
these waves and one group, as before. Except for k ¼ 2, the choice
X ¼WT consistently outperforms the choice X ¼WT . The case
k ¼ 2 is easily explained by the fact that the wave number consid-
ered is low, and no Robin boundary condition is introduced. There-
fore the character of the matrix is almost real SPD, for which the
eigenvectors are orthogonal if X ¼WT is considered. Apart from
that, the same characteristics as before are met, namely an increase
in the iteration count with an increase in the wave number.

The same experience is conducted with Robin boundary condi-
tions at the right boundary and is reported on Fig. 4.6. Now the



Fig. 4.2. Pressure disturbance for the cavity example at various wave numbers.
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choice X ¼WT consistently outperforms the choice X ¼WT for all
wavenumber value. The introduction of the Robin boundary condi-
tion reinforces the symmetric complex character, for which the
choice X ¼WT is not adapted. It appears to be clear that X ¼WT

is a reliable choice for oscillatory solutions, as discussed in Section
3.3.
4.1.3. Discrete eigenvector
After having investigated the choice of space for X, the gap be-

tween the discrete and the continuous eigenvector is studied. Table
4.1 gives the nodal contribution of AW for a point fully surrounded
by the same group normalized by Kii þ k2Mii where K is the Lapla-
cian matrix and M the mass matrix, in order to obtain a positive
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non zero value. As W is a free space solution of the Helmholtz oper-
ator, AW should be machine zero for all the directions as it is for a
constant eigenvector for the Laplacian. It is not, as its discrete
counterpart does not belong to the discrete space considered here,
but as expected, it is clearly seen that it increases as the wave num-
ber increases.

4.1.4. Influence in the group and direction number
Finally, the same example is studied with respect to the group

and direction number. Regarding the direction, three stencils were
chosen, namely 6, 26 and 56 directions. Results are reported in
Table 4.2 for a constant interpolation used typically for SPD matri-
ces, in Table 4.3 for a stencil with 6 directions, in Table 4.4 for a
stencil of 26 directions and in Table 4.5 for a stencil with 56 direc-
tions with Neumann boundary conditions. Very similar results are
obtained with Robin boundary conditions. A dash indicates an er-
ror in the factorization. A simple complex skyline LU direct solver
is used in this study without pivoting. A more advanced solver cer-
tainly performs better but does not alter the main characteristics of
the discussion. As observed, an error in the factorization appears
when the direction number increases, or when the wave number
decreases. It is fully consistent with the fact that the increase in
the direction number gives rise to a more and more ill-conditioned
system if the wave number does not increase. However, the stencil
with 6 directions already provides a substantial acceleration in the
GMRES convergence. Typically, the iteration number does not
seem to be affected by the increase in the wave number, until it
reaches a value for which it begins to increase. By increasing the
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Table 4.1
Nodal contribution of AW for a point fully surrounded by the same group for the
square example.

Wave number 2 4 8 16 32

1st wave Real �6 � 10�5 1 � 10�4 �1 � 10�3 2 � 10�4 �4 � 10�3

1st wave Imag. 2 � 10�7 �2 � 10�4 1 � 10�4 �4 � 10�3 1 � 10�2

2nd wave Real 5 � 10�5 �1 � 10�4 1 � 10�3 �4 � 10�4 4 � 10�3

2nd wave Imag. �1 � 10�7 2 � 10�4 �5 � 10�4 4 � 10�3 �1 � 10�2

Table 4.2
Iteration number for various wave numbers and group numbers with a constant
interpolation and Neumann boundary conditions for the cavity example.

ngrou 0 10 100 500

k = 2 655 423 192 100
k = 4 706 506 223 109
k = 8 860 783 361 177
k = 16 1267 1159 629 313
k = 32 1991 2017 1479 825

Table 4.3
Iteration number for various wave numbers and group numbers with a stencil of 6
directions and Neumann boundary conditions for the cavity example.

ngrou 0 10 100 500

k = 2 655 171 71 31
k = 4 706 174 71 31
k = 8 860 239 76 31
k = 16 1267 567 87 31
k = 32 1991 1657 336 48

Table 4.4
Iteration number for various wave numbers and group numbers with a stencil of 26
directions and Neumann boundary conditions for the cavity example.

ngrou 0 10 100

k = 2 655 – –
k = 4 706 199 –
k = 8 860 81 –
k = 16 1267 98 28
k = 32 1991 515 38

Table 4.5
Iteration number for various wave numbers and group numbers with a stencil of 56
directions and Neumann boundary conditions for the cavity example.

ngrou 0 10 100

k = 2 655 – –
k = 4 706 – –
k = 8 860 – –
k = 16 1267 210 –
k = 32 1991 225 –
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wave number, the system becomes less and less singular. For each
of the three stencils and for each number of group tested, there is
first an increase in the iteration number, certainly due to the al-
most singular system, and then a decrease. It also does not seem
to pay off to increase the direction number compared to the group
number, as the assembly cost is noticeably higher, the solver is less
robust for low wave number, and the iteration count is not sub-
stantially reduced. However, very good convergence is obtained
overall, even for high wave numbers. Furthermore, an almost per-
fect monotonic behavior is observed between the increase of the
group number and the decrease of the iteration count, including
the case without deflation. This will not be the case for real three
dimensional examples, besides the impediment to use full GMRES,
and illustrates the fact that it is not the same to solve small and
large problems with iterative solvers.

4.2. Cylinder scattering

This example is a classical benchmark for the Helmholtz equa-
tion with analytical solution. Two concentric cylinders define an
inner volume. The inner cylinder diameter is 0.5 and the outer
one is 2. This example was again run in three dimensions with a
slight extrude of the two dimensional mesh. The mesh contains
280 � 103 points and 860 � 103 elements. The full GMRES is given



Fig. 4.7. Pressure disturbance for the cavity example at various wave numbers.
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up for the restarted GMRES to run in a more applied context. The
Krylov subspace used for this example was fixed to 100. Results ob-
tained for different wave numbers are displayed on Fig. 4.7.

Iterations obtained for different wave numbers and group num-
bers are reported on Table 4.6 for a constant interpolation, on Table
4.7 for a stencil of 6 directions, and on Table 4.8 for a stencil of 26
directions. The same trends as in the previous example are ob-
served. For a fixed k, increasing the group number or the direction
number produces a drastic reduction of the iteration number.
However, as k increases, there seems to be a value from which
Table 4.6
Iteration number and CPU time for various wave numbers and group numbers with a
constant interpolation for the cylinder example.

ngrou 0 6 � 102 6 � 103 6 � 104

k = 1 3096 (1385) 118 (38) 120 (50) 20 (17)
k = 2 3516 (1007) 184 (62) 56 (25) 22 (13)
k = 4 5392 (2681) 496 (218) 120 (77) 35 (22)
k = 8 2264 (718) 2380 (1061) 444 (237) 71 (37)
k = 16 2433 (770) 104 1832 (1036) 247 (180)

k = 32 2437 (774) 104 104 1055 (955)

k = 64 2586 (897) 104 104 5982

Table 4.7
Iteration number and CPU time for various wave numbers and group numbers with a
stencil of 6 directions for the cylinder example.

ngrou 0 102 103 104

k = 1 3096 (1385) 64 (14) 22 (7) 6 (12)
k = 2 3516 (1007) 74 (15) 25 (8) 7 (13)
k = 4 5392 (2681) 95 (23) 30 (9) 9 (14)
k = 8 2264 (718) 296(89) 37 (11) 12 (17)
k = 16 2433 (770) 104 81 (27) 14 (18)

k = 32 2437 (774) 104 3528 (1237) 20 (28)

k = 64 2586 (897) 104 104 182 (139)
the fast convergence stops suddenly and the deflation produces a
larger iteration number than GMRES without deflation. Note the
non monotonic behavior of GMRES with respect to the wave num-
ber. Again, the system is not invertible for a large number of direc-
tions and a low wave number, as expected. Apart from this
drawback, the increase in direction does come with a faster con-
vergence. Finally, in order to converge fast at high wave number
(k = 64), it is seen that the coarse grid size is of the order of 20 per-
cent the size of the fine grid, almost the double as one coarsening
level in three dimensions, and the beginning of slow down of
Table 4.8
Iteration number and CPU time for various wave numbers and group numbers with a
stencil of 26 directions for the cylinder example.

ngrou 0 102 103

k = 1 3096 (1385) – –
k = 2 3516 (1007) – –
k = 4 5392 (2681) 30 (116) –
k = 8 2264 (718) 45 (117) 14 (114)
k = 16 2433 (770) 77 (162) 16 (116)
k = 32 2437 (774) 104 23 (122)

k = 64 2586 (897) 104 234 (433)

Table 4.9
Nodal contribution of AW for a point fully surrounded by the same group for the
cylinder scattering.

ndir 1 2 3 4 5 6

k = 1 8 � 10�7 8 � 10�7 3 � 10�6 3 � 10�6 �4 � 10�7 �4 � 10�7

k = 2 8 � 10�7 8 � 10�7 1 � 10�3 1 � 10�3 �2 � 10�6 �2 � 10�6

k = 4 �2 � 10�5 �2 � 10�5 4 � 10�3 4 � 10�3 �8 � 10�6 �8 � 10�6

k = 8 4 � 10�5 4 � 10�5 2 � 10�2 2 � 10�2 �4 � 10�5 �4 � 10�5

k = 16 4 � 10�5 4 � 10�5 4 � 10�2 4 � 10�2 �1 � 10�4 �1 � 10�4

k = 32 �1 � 10�3 �1 � 10�3 4 � 10�2 4 � 10�2 �4 � 10�4 �4 � 10�4

k = 64 4 � 10�3 4 � 10�3 10�1 10�1 3 � 10�3 3 � 10�3



Fig. 4.8. Eigenvalue distribution with and without deflation, with exact eigenvectors and complex exponentials for the cylinder example.

Fig. 4.9. Mesh and solution for an F117 flyer for k = 16.

Table 4.10
Iteration number and CPU time for various wave numbers and group numbers with
constant interpolation for the F117 flyer example.

ngrou 0 6 � 103 6 � 104

k = 1 1669 (9409) 196 (1067) 82 (568)
k = 2 1563 (7802) 750 (3230) 283 (2025)
k = 4 1544 (7891) 3657 (25666) 1294 (12946)
k = 8 1700 (9434) 10000 10000
k = 16 1998 (10635) 10000 10000
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convergence rises. Table 4.9 reports the nodal contribution of an
interior node normalized as before by the diagonal of K þ k2M. It
is again clearly seen how the analytical solution deviates from
eigenvectors as k increases.
Compared to the SPD case, it is seen that subdomain deflation
worsens convergence. After investigating with different parame-
ters, it was found that even though convergence was worse with
deflation, it was the restart procedure that could not accommodate
deflation with a high wave number. The same example with a
small mesh was conducted with MATLAB [65]. The eigenvalue dis-
tribution for k = 8 for a much smaller mesh representing 10 points
per wave lengths is shown in Fig. 4.8 without deflation, with defla-
tion with the exact eigenvectors associated to the smallest



Table 4.11
Iteration number and CPU time for various wave numbers and group numbers with a
stencil of 6 directions for the F117 flyer example.

ngrou 0 103 104 105

k = 1 1669 (9409) 71 (638) 39 (1076) 20 (62120)
k = 2 1563 (7802) 87 (784) 44 (1031) 21 (63340)
k = 4 1544 (7891) 1840 (20568) 72 (1373) 24 (41852)
k = 8 1700 (9434) 5453 (50901) 1550 (16045) 55 (52706)
k = 16 1998 (10635) 7811 (55371) 10000 1324(75360)

Table 4.12
Iteration number and CPU time for various wave numbers and group numbers with a
stencil of 26 directions for the F117 flyer example.

ngrou 0 103

k = 1 1669 (9409) 201 (4509)
k = 2 1563 (7802) 59 (1112)
k = 4 1544 (7891) 62 (1098)
k = 8 1700 (9434) 6892 (71306)
k = 16 1998 (10635) 10000
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eigenvalue, and with the approximate exponentials for 10 groups
and 100 groups. It is clearly shown that the exponential deflation
spreads more the eigenvalues off of the real axis for 10 groups.
For 100 groups, the same phenomenon is observed compared to
the original spectrum, but all the negative eigenvalues have been
removed, as well as the closest to zero. The eigenvalues are much
more clustered, leading to fast convergence. For this small prob-
lem, full GMRES without deflation converges in 277 iterations,
deflation with 10 groups in 262 iterations, and with 100 groups
in 26 iterations. As the Krylov subspace diminishes, deflation is
worse and worse for 10 groups, until becoming much worse than
the non deflated GMRES. For a Krylov subspace of 10, the non de-
flated GMRES converges in 486 iterations while the deflated
GMRES with 10 groups converges in 928 iterations, and the de-
flated GMRES with exact eigenvectors converges in 403 iterations
for 42 eigenvectors. This illustrates that the cause of divergence
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of the deflation process is due to the approximate eigenvectors
constituting the deflation subspace. For exact eigenvectors, defla-
tion removes the eigenvalue from the spectrum, giving rise to
the same or to a simpler polynomial approximation for the Krylov
subspace.

4.3. F117 flyer

In this example, the geometry of the F117 flyer is studied. This is
the first example of mildly complex three dimensional geometry. A
planar wave hits the surface of the F117 and is scattered in the vol-
ume of study. Dirichlet boundary conditions are applied on the sur-
face, and approximated Robin boundary conditions are applied on
the outer surface. The mesh is composed of 29 � 106 elements and
5:1 � 106 points. The solution for k ¼ 16 is displayed on Fig. 4.9. A
Krylov subspace of 100 was used for this example. The iteration
count for constant interpolation, as in the SPD case, is reported
on Table 4.10. The iteration count for various wave numbers and
group numbers is reported on Table 4.11 for a stencil of 6 direc-
tions and on Table 4.12 for 26 directions. The iteration history is re-
ported in Fig. 4.10 for the non deflated GMRES and for deflation
with 104 groups with 6 directions. It is clearly seen that exponen-
tial interpolation provides better results for the same number of
degrees of freedom for the coarse operator compared to the con-
stant interpolation for the same coarse matrix size. Regarding a
stencil of 26 directions, no substantial improvement appears. As
noted before, it is less robust for low wave number and does not
give a substantial acceleration for high wave number. For the three
interpolations, the same pattern appears, namely a fast converge
for low wave numbers and a sudden slow down up to a complete
divergence as the wave number keeps on increasing.

4.4. Submarine

This example depicts a submarine and was chosen as represent-
ing a realistic example. Again, a plane wave impinges on the sur-
face of the submarine where a Dirichlet boundary condition has
been applied. An approximated Robin boundary condition has been
 3000  4000  5000
rations

nvergence

k=1 no deflation
k=2 no deflation
k=4 no deflation
k=8 no deflation

k=16 no deflation
k=1 with deflation
k=2 with deflation
k=4 with deflation
k=8 with deflation

k=16 with deflation

n reported here has been performed with 104 groups and 6 directions per group. The
rves correspond to the non deflated GMRES for k = {1,2,4,8,16}. Finally, the two less



Fig. 4.11. Mesh and solution for the submarine example at k = 8.

Table 4.13
Iteration number for various wave numbers and group numbers with a stencil of 6
directions for the submarine example.

ngrou 0 104

k = 1 3842 (55848) 69 (2984)
k = 2 3063 (45478) 678(18742)
k = 4 3391 (46804) 10000
k = 8 4936 (114869) 10000
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applied to the outer surface, simulating an infinite domain. The
mesh contains 262 � 106 elements and 44 � 106 points, and the solu-
tion for k ¼ 8 is depicted on Fig. 4.11. A Krylov subspace of 50 was
used for this example. Results for 6 directions are displayed on
Table 4.13, as the same behavior as the previous examples is ob-
served. Again, a fast convergence for low wave numbers takes
place, namely a CPU speed up of almost 20. Then a slow down in
convergence appears for k ¼ 2, and then divergence for higher k.
Compared to previous examples, the increased size of this example
stretches out the need for a larger coarse grid. However, the size of
the coarse grid becomes too large to be solved efficiently by the di-
rect solver, and clearly illustrates the limitation of the method for
large examples and high wave numbers.

5. Conclusion

Complex subdomain deflation applied to the Helmholtz equa-
tion was presented on large and complex examples. The first major
departure from the SPD case is characterized by the constraint that
the coarse grid should be large enough to even guarantee conver-
gence. As the wave number increases, the size of the coarse grid
should increase accordingly to maintain fast convergence. The
same convergence pattern was observed for all the examples pre-
sented here, namely a fast convergence for a small coarse grid and
a low wave number until a sudden divergence if the coarse grid
size is maintained constant while the wave number increases.
The main drawback in the deflation procedure reveals itself in
the coarse grid inversion, solved by a direct solver, becoming pro-
hibitively expensive for high wave numbers on complex examples.
Iterative inversion should be performed accurately, as underlined
in [49], giving still worse performances than with a direct solver.

It was nevertheless shown that, when the coarse grid size was in
the convergence range, exponential interpolation was consistently
better than constant interpolation, as advocated in [33] in a multi-
grid context. An interesting procedure proposed in the former work,
namely the separation procedure, may be performed easily on
structured grids but has, to the authors’ knowledge, no direct exten-
sions on unstructured grids. In the deflation context, it would pro-
vide decoupling of the ray equations and smaller coarse matrices,
but does not change the previous conclusions asymptotically.
Regarding the number of directions for the deflation space, it
was shown that a large number of directions did not seem to be
an effective choice. On one hand, a large number of directions pro-
duces a coarse matrix with very high condition number, if invert-
ible, for low wave numbers. On the other hand, convergence did
not seem to pay off the higher assembly cost above 6 directions.

The sensibility to the choice of deflation vectors, or prolonga-
tion, was also mentioned. Changing the value of the wave number
in the prolongation could lead to improvements, although not sub-
stantials. However, it gives a hint on what can go wrong, namely
the coarse grid solve or coarse grid correction. The main reason
of the lack of convergence at high wave numbers is given in [66],
where it is shown that the coarse grid is increasingly sensitive to
approximate eigenvectors as the wave number increases.

The strong coupling between the discretization accuracy and
the solver efficiency was highlighted. For indefinite problems, the
coupling between the stability of the discrete operator and the
convergence of the iterative solver has been highlighted for the
Stokes problem in [67]. A very similar situation appears with
Helmholtz.

There are different possible ways of improving convergence to
higher wave numbers. One solution may consist in looking for
more accurate eigenvectors of the discrete operator. Without rely-
ing on an explicit eigenvector computation, a smoothed approxi-
mation [39] could certainly improve convergence. Also, a larger
coarse grid solved only approximately iteratively may provide en-
ough acceleration to prove efficient on a CPU basis. Finally, the re-
moval of the coarse grid operator for a more algebraic approach
may also provide an answer. However, the deflation technique
would only benefit from the first approach, as an approximated
solve is not appropriate for deflation. Finally, the use of high order
elements [68–70] should contribute to a better approximation of
plane waves for higher wave number, and therefore a better
convergence.

Ultimately, concerning low order approximations, one may
wonder if it worth solving a discrete problem with a mesh too
coarse to see fast convergence with deflation, while it is already
known that accuracy will be low, as discrete eigenmodes deviate
substantially from their analytical counterpart.
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