294 research outputs found

    Lab Retriever: a software tool for calculating likelihood ratios incorporating a probability of drop-out for forensic DNA profiles

    Get PDF
    BACKGROUND: Technological advances have enabled the analysis of very small amounts of DNA in forensic cases. However, the DNA profiles from such evidence are frequently incomplete and can contain contributions from multiple individuals. The complexity of such samples confounds the assessment of the statistical weight of such evidence. One approach to account for this uncertainty is to use a likelihood ratio framework to compare the probability of the evidence profile under different scenarios. While researchers favor the likelihood ratio framework, few open-source software solutions with a graphical user interface implementing these calculations are available for practicing forensic scientists. RESULTS: To address this need, we developed Lab Retriever, an open-source, freely available program that forensic scientists can use to calculate likelihood ratios for complex DNA profiles. Lab Retriever adds a graphical user interface, written primarily in JavaScript, on top of a C++ implementation of the previously published R code of Balding. We redesigned parts of the original Balding algorithm to improve computational speed. In addition to incorporating a probability of allelic drop-out and other critical parameters, Lab Retriever computes likelihood ratios for hypotheses that can include up to four unknown contributors to a mixed sample. These computations are completed nearly instantaneously on a modern PC or Mac computer. CONCLUSIONS: Lab Retriever provides a practical software solution to forensic scientists who wish to assess the statistical weight of evidence for complex DNA profiles. Executable versions of the program are freely available for Mac OSX and Windows operating systems. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-015-0740-8) contains supplementary material, which is available to authorized users

    A novel approach to simulate gene-environment interactions in complex diseases

    Get PDF
    Background: Complex diseases are multifactorial traits caused by both genetic and environmental factors. They represent the major part of human diseases and include those with largest prevalence and mortality (cancer, heart disease, obesity, etc.). Despite a large amount of information that has been collected about both genetic and environmental risk factors, there are few examples of studies on their interactions in epidemiological literature. One reason can be the incomplete knowledge of the power of statistical methods designed to search for risk factors and their interactions in these data sets. An improvement in this direction would lead to a better understanding and description of gene-environment interactions. To this aim, a possible strategy is to challenge the different statistical methods against data sets where the underlying phenomenon is completely known and fully controllable, for example simulated ones. Results: We present a mathematical approach that models gene-environment interactions. By this method it is possible to generate simulated populations having gene-environment interactions of any form, involving any number of genetic and environmental factors and also allowing non-linear interactions as epistasis. In particular, we implemented a simple version of this model in a Gene-Environment iNteraction Simulator (GENS), a tool designed to simulate case-control data sets where a one gene-one environment interaction influences the disease risk. The main aim has been to allow the input of population characteristics by using standard epidemiological measures and to implement constraints to make the simulator behaviour biologically meaningful. Conclusions: By the multi-logistic model implemented in GENS it is possible to simulate case-control samples of complex disease where gene-environment interactions influence the disease risk. The user has full control of the main characteristics of the simulated population and a Monte Carlo process allows random variability. A knowledge-based approach reduces the complexity of the mathematical model by using reasonable biological constraints and makes the simulation more understandable in biological terms. Simulated data sets can be used for the assessment of novel statistical methods or for the evaluation of the statistical power when designing a study

    Effectiveness of strategies to increase the validity of findings from association studies: size vs. replication

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The capacity of multiple comparisons to produce false positive findings in genetic association studies is abundantly clear. To address this issue, the concept of false positive report probability (FPRP) measures "the probability of no true association between a genetic variant and disease given a statistically significant finding". This concept involves the notion of prior probability of an association between a genetic variant and a disease, making it difficult to achieve acceptable levels for the FPRP when the prior probability is low. Increasing the sample size is of limited efficiency to improve the situation.</p> <p>Methods</p> <p>To further clarify this problem, the concept of true report probability (TRP) is introduced by analogy to the positive predictive value (PPV) of diagnostic testing. The approach is extended to consider the effects of replication studies. The formula for the TRP after k replication studies is mathematically derived and shown to be only dependent on prior probability, alpha, power, and number of replication studies.</p> <p>Results</p> <p>Case-control association studies are used to illustrate the TRP concept for replication strategies. Based on power considerations, a relationship is derived between TRP after k replication studies and sample size of each individual study. That relationship enables study designers optimization of study plans. Further, it is demonstrated that replication is efficient in increasing the TRP even in the case of low prior probability of an association and without requiring very large sample sizes for each individual study.</p> <p>Conclusions</p> <p>True report probability is a comprehensive and straightforward concept for assessing the validity of positive statistical testing results in association studies. By its extension to replication strategies it can be demonstrated in a transparent manner that replication is highly effective in distinguishing spurious from true associations. Based on the generalized TRP method for replication designs, optimal research strategy and sample size planning become possible.</p

    Gene expression drives the evolution of dominance.

    Get PDF
    Dominance is a fundamental concept in molecular genetics and has implications for understanding patterns of genetic variation, evolution, and complex traits. However, despite its importance, the degree of dominance in natural populations is poorly quantified. Here, we leverage multiple mating systems in natural populations of Arabidopsis to co-estimate the distribution of fitness effects and dominance coefficients of new amino acid changing mutations. We find that more deleterious mutations are more likely to be recessive than less deleterious mutations. Further, this pattern holds across gene categories, but varies with the connectivity and expression patterns of genes. Our work argues that dominance arises as a consequence of the functional importance of genes and their optimal expression levels

    Evolutionary Dynamics of Co-Segregating Gene Clusters Associated with Complex Diseases

    Get PDF
    BACKGROUND: The distribution of human disease-associated mutations is not random across the human genome. Despite the fact that natural selection continually removes disease-associated mutations, an enrichment of these variants can be observed in regions of low recombination. There are a number of mechanisms by which such a clustering could occur, including genetic perturbations or demographic effects within different populations. Recent genome-wide association studies (GWAS) suggest that single nucleotide polymorphisms (SNPs) associated with complex disease traits are not randomly distributed throughout the genome, but tend to cluster in regions of low recombination. PRINCIPAL FINDINGS: Here we investigated whether deleterious mutations have accumulated in regions of low recombination due to the impact of recent positive selection and genetic hitchhiking. Using publicly available data on common complex diseases and population demography, we observed an enrichment of hitchhiked disease associations in conserved gene clusters subject to selection pressure. Evolutionary analysis revealed that these conserved gene clusters arose by multiple concerted rearrangements events across the vertebrate lineage. We observed distinct clustering of disease-associated SNPs in evolutionary rearranged regions of low recombination and high gene density, which harbor genes involved in immunity, that is, the interleukin cluster on 5q31 or RhoA on 3p21. CONCLUSIONS: Our results suggest that multiple lineage specific rearrangements led to a physical clustering of functionally related and linked genes exhibiting an enrichment of susceptibility loci for complex traits. This implies that besides recent evolutionary adaptations other evolutionary dynamics have played a role in the formation of linked gene clusters associated with complex disease traits

    Disease-associated alleles in genome-wide association studies are enriched for derived low frequency alleles relative to HapMap and neutral expectations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome-wide association studies give insight into the genetic basis of common diseases. An open question is whether the allele frequency distributions and ancestral vs. derived states of disease-associated alleles differ from the rest of the genome. Characteristics of disease-associated alleles can be used to increase the yield of future studies.</p> <p>Methods</p> <p>The set of all common disease-associated alleles found in genome-wide association studies prior to January 2010 was analyzed and compared with HapMap and theoretical null expectations. In addition, allele frequency distributions of different disease classes were assessed. Ages of HapMap and disease-associated alleles were also estimated.</p> <p>Results</p> <p>The allele frequency distribution of HapMap alleles was qualitatively similar to neutral expectations. However, disease-associated alleles were more likely to be low frequency derived alleles relative to null expectations. 43.7% of disease-associated alleles were ancestral alleles. The mean frequency of disease-associated alleles was less than randomly chosen CEU HapMap alleles (0.394 vs. 0.610, after accounting for probability of detection). Similar patterns were observed for the subset of disease-associated alleles that have been verified in multiple studies. SNPs implicated in genome-wide association studies were enriched for young SNPs compared to randomly selected HapMap loci. Odds ratios of disease-associated alleles tended to be less than 1.5 and varied by frequency, confirming previous studies.</p> <p>Conclusions</p> <p>Alleles associated with genetic disease differ from randomly selected HapMap alleles and neutral expectations. The evolutionary history of alleles (frequency and ancestral vs. derived state) influences whether they are implicated in genome-wide assocation studies.</p

    No evidence for association between polymorphisms in GRM3 and schizophrenia

    Get PDF
    BACKGROUND: Three studies have previously reported data that were interpreted by the authors as supportive of association between schizophrenia and polymorphisms in the gene encoding the metabotropic glutamate receptor GRM3. METHODS: In a bid to examine this hypothesis, we examined seven SNPs spanning GRM3 in a UK case-control sample (schizophrenic cases n = 674, controls n = 716). These included all SNPs previously reported to be associated, alone or in haplotypes, with schizophrenia in European or European American samples. RESULTS: Our data showed no evidence for association with single markers, or 2, 3, 4 and 5 marker haplotypes, nor did any specific haplotypes show evidence for association according to previously observed patterns. CONCLUSION: Examination of our own data and those of other groups leads us to conclude that at present, GRM3 should not be viewed as a gene for which there is replicated evidence for association with schizophrenia

    Genetic Differences between the Determinants of Lipid Profile Phenotypes in African and European Americans: The Jackson Heart Study

    Get PDF
    Genome-wide association analysis in populations of European descent has recently found more than a hundred genetic variants affecting risk for common disease. An open question, however, is how relevant the variants discovered in Europeans are to other populations. To address this problem for cardiovascular phenotypes, we studied a cohort of 4,464 African Americans from the Jackson Heart Study (JHS), in whom we genotyped both a panel of 12 recently discovered genetic variants known to predict lipid profile levels in Europeans and a panel of up to 1,447 ancestry informative markers allowing us to determine the African ancestry proportion of each individual at each position in the genome. Focusing on lipid profilesβ€”HDL-cholesterol (HDL-C), LDL-cholesterol (LDL-C), and triglycerides (TG)β€”we identified the lipoprotein lipase (LPL) locus as harboring variants that account for interethnic variation in HDL-C and TG. In particular, we identified a novel common variant within LPL that is strongly associated with TG (pβ€Š=β€Š2.7Γ—10βˆ’6) and explains nearly 1% of the variability in this phenotype, the most of any variant in African Americans to date. Strikingly, the extensively studied β€œgain-of-function” S447X mutation at LPL, which has been hypothesized to be the major determinant of the LPL-TG genetic association and is in trials for human gene therapy, has a significantly diminished strength of biological effect when it is found on a background of African rather than European ancestry. These results suggest that there are other, yet undiscovered variants at the locus that are truly causal (and are in linkage disequilibrium with S447X) or that work synergistically with S447X to modulate TG levels. Finally, we find systematically lower effect sizes for the 12 risk variants discovered in European populations on the African local ancestry background in JHS, highlighting the need for caution in the use of genetic variants for risk assessment across different populations
    • …
    corecore