73 research outputs found

    Minimum sample sizes for population genomics: an empirical study from an Amazonian plant species

    Full text link
    High-throughput DNA sequencing facilitates the analysis of large portions of the genome in nonmodel organisms, ensuring high accuracy of population genetic parameters. However, empirical studies evaluating the appropriate sample size for these kinds of studies are still scarce. In this study, we use double-digest restriction associated DNA sequencing (ddRADseq) to recover thousands of single nucleotide polymorphisms (SNPs) for two physically isolated populations of Amphirrhox longifolia (Violaceae), a nonmodel plant species for which no reference genome is available. We used resampling techniques to construct simulated populations with a random subset of individuals and SNPs to determine how many individuals and biallelic markers should be sampled for accurate estimates of intra- and interpopulation genetic diversity. We identified 3646 and 4900 polymorphic SNPs for the two populations of A. longifolia, respectively. Our simulations show that, overall, a sample size greater than eight individuals has little impact on estimates of genetic diversity within A. longifolia populations, when 1000 SNPs or higher are used. Our results also show that even at a very small sample size (i.e. two individuals), accurate estimates of FST can be obtained with a large number of SNPs (≄1500). These results highlight the potential of high-throughput genomic sequencing approaches to address questions related to evolutionary biology in nonmodel organisms. Furthermore, our findings also provide insights into the optimization of sampling strategies in the era of population genomics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/136081/1/Nazareno et al. 2017a.pdfDescription of Nazareno et al. 2017a.pdf : Main articl

    Neogene History of the Amazonian Flora: A Perspective Based on Geological, Palynological, and Molecular Phylogenetic Data

    Get PDF
    The Amazon hosts one of the largest and richest rainforests in the world, but its origins remain debated. Growing evidence suggests that geodiversity and geological history played essential roles in shaping the Amazonian flora. Here we summarize the geo-climatic history of the Amazon and review paleopalynological records and time-calibrated phylogenies to evaluate the response of plants to environmental change. The Neogene fossil record suggests major sequential changes in plant composition and an overall decline in diversity. Phylogenies of eight Amazonian plant clades paint a mixed picture, with the diversification of most groups best explained by constant speciation rates through time, while others indicate clade-specific increases or decreases correlated with climatic cooling or increasing Andean elevation. Overall, the Amazon forest seems to represent a museum of diversity with a high potential for biological diversification through time. To fully understand how the Amazon got its modern biodiversity, further multidisciplinary studies conducted within a multimillion-year perspective are needed. â–ȘThe history of the Amazon rainforest goes back to the beginning of the Cenozoic (66 Ma) and was driven by climate and geological forces. â–ȘIn the early Neogene (23-13.8 Ma), a large wetland developed with episodic estuarine conditions and vegetation ranging from mangroves to terra firme forest. â–ȘIn the late Neogene (13.8-2.6 Ma), the Amazon changed into a fluvial landscape with a less diverse and more open forest, although the details of this transition remain to be resolved. â–ȘThese geo-climatic changes have left imprints on the modern Amazonian diversity that can be recovered with dated phylogenetic trees. â–ȘAmazonian plant groups show distinct responses to environmental changes, suggesting that Amazonia is both a refuge and a cradle of biodiversity

    Botanical Monography in the Anthropocene

    Get PDF
    Unprecedented changes in the Earth's biota are prompting urgent efforts to describe and conserve plant diversity. For centuries, botanical monographs — comprehensive systematic treatments of a family or genus — have been the gold standard for disseminating scientific information to accelerate research. The lack of a monograph compounds the risk that undiscovered species become extinct before they can be studied and conserved. Progress towards estimating the Tree of Life and digital information resources now bring even the most ambitious monographs within reach. Here, we recommend best practices to complete monographs urgently, especially for tropical plant groups under imminent threat or with expected socioeconomic benefits. We also highlight the renewed relevance and potential impact of monographies for the understanding, sustainable use, and conservation of biodiversity.Fil: Grace, Olwen M.. Royal Botanic Gardens, Kew; Reino UnidoFil: PĂ©rez-Escobar, Oscar A.. Royal Botanic Gardens, Kew; Reino UnidoFil: Lucas, Eve J.. Royal Botanic Gardens, Kew; Reino UnidoFil: Vorontsova, Maria S.. Royal Botanic Gardens, Kew; Reino UnidoFil: Lewis, Gwilym P.. Royal Botanic Gardens, Kew; Reino UnidoFil: Walker, Barnaby E.. Royal Botanic Gardens, Kew; Reino UnidoFil: Lohmann, LĂșcia G.. Universidade de Sao Paulo; BrasilFil: Knapp, Sandra. Natural History Museum; Reino UnidoFil: Wilkie, Peter. Royal Botanic Gardens; Reino UnidoFil: Sarkinen, Tiina. Royal Botanic Gardens; Reino UnidoFil: Darbyshire, Iain. Royal Botanic Gardens; Reino UnidoFil: Lughadha, Eimear Nic. Royal Botanic Gardens; Reino UnidoFil: Monro, Alexandre. Royal Botanic Gardens; Reino UnidoFil: Woudstra, Yannick. Universidad de Copenhagen; Dinamarca. Royal Botanic Gardens; Reino UnidoFil: Demissew, Sebsebe. Addis Ababa University; EtiopĂ­aFil: Muasya, A. Muthama. University Of Cape Town; SudĂĄfricaFil: DĂ­az, Sandra Myrna. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto Multidisciplinario de BiologĂ­a Vegetal. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas FĂ­sicas y Naturales. Instituto Multidisciplinario de BiologĂ­a Vegetal; ArgentinaFil: Baker, William J.. Royal Botanic Gardens, Kew; Reino UnidoFil: Antonelli, Alexandre. University of Oxford; Reino Unido. University Goteborg; Sueci

    Macroecological links between the Linnean, Wallacean, and Darwinian shortfalls

    Get PDF
    Species are the currency of most biodiversity studies. However, many shortfalls and biases remain in our biodiversity estimates, preventing a comprehensive understanding of the eco-evolutionary processes that have shaped the biodiversity currently available on Earth. Biased biodiversity estimates also jeopardize the effective implementation of data-driven conservation strategies, ultimately leading to biodiversity loss. Here, we delve into the concept of the Latitudinal Taxonomy Gradient (LTG) and show how this new idea provides an interesting conceptual link between the Linnean (i.e., our ignorance of how many species there are on Earth), Darwinian (i.e., our ignorance of species evolutionary relationships), and Wallacean (i.e., our ignorance on species distribution) shortfalls. More specifically, we contribute to an improved understanding of LTGs and establish the basis for the development of new methods that allow us to: (i) better account for the integration between different shortfalls and, (ii) estimate how these interactions may affect our understanding about the evolutionary components of richness gradients at macroecological scales.This manuscript is partially derived from a working group on “Biodiversity Shortfalls” held in November 2019 and sponsored by the National Institutes for Science and Technology (INCT) in Ecology, Evolution, and Biodiversity Conservation (CNPq proc. 465610/2014-5 and FAPEG proc. 201810267000023). JJMG and LEF are supported by Ph.D. and M.Sc. scholarships from CAPES, while LM and RBP are supported by postdoctoral fellowships from CAPES (PNPD). JS was funded by the funded by the European Union’s Horizon 2020 research and innovation programme under the Marie SkƂodowska-Curie Action (grant agreement #843234; project: TAXON-TIME) and by the Spanish Council for Scientific Research (IF_ERC). GT and LJ are supported by a DTI fellowships from CNPq, while JAFD-F, LGL, and CJBC are supported by Productivity Grants from CNPq.Peer reviewe

    Brazilian Flora 2020: Leveraging the power of a collaborative scientific network

    Get PDF
    The shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiver sity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxo nomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world’s known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world’s most biodiverse countries. We further identify collection gaps and summarize future goals that extend be yond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still un equally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the coun try. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora.Fil: Gomes da Silva, Janaina. Jardim BotĂąnico do Rio de Janeiro: Rio de Janeiro, BrasilFil: Filardi, Fabiana L.R. Jardim BotĂąnico do Rio de Janeiro; BrasilFil: Barbosa, MarĂ­a Regina de V. Universidade Federal da ParaĂ­ba: Joao Pessoa; BrasilFil: Baumgratz, JosĂ© Fernando Andrade. Jardim BotĂąnico do Rio de Janeiro; BrasilFil: de Mattos Bicudo, Carlos Eduardo. Instituto de BotĂąnica. NĂșcleo de Pesquisa em Ecologia; BrasilFil: Cavalcanti, Taciana. Empresa Brasileira de Pesquisa AgropecuĂĄria Recursos GenĂ©ticos e Biotecnologia; BrasilFil: Coelho, Marcus. Prefeitura Municipal de Campinas; BrasilFil: Ferreira da Costa, Andrea. Federal University of Rio de Janeiro. Museu Nacional. Department of Botany; BrasilFil: Costa, Denise. Instituto de Pesquisas Jardim Botanico do Rio de Janeiro; BrasilFil: Dalcin, Eduardo C. Rio de Janeiro Botanical Garden Research Institute; BrasilFil: Labiak, Paulo. Universidade Federal do Parana; BrasilFil: Cavalcante de Lima, Haroldo. Jardim BotĂąnico do Rio de Janeiro; BrasilFil: Lohmann, Lucia. Universidade de SĂŁo Paulo; BrasilFil: Maia, Leonor. Universidade Federal de Pernambuco; BrasilFil: Mansano, Vidal de Freitas. Instituto de Pesquisas Jardim BotĂąnico do Rio de Janeiro; Brasil. Jardim BotĂąnico do Rio de Janeiro; BrasilFil: Menezes, MariĂąngela. Federal University of Rio de Janeiro. Museu Nacional. Department of Botany; BrasilFil: Morim, Marli. Instituto de Pesquisas Jardim BotĂąnico do Rio de Janeiro; BrasilFil: Moura, Carlos Wallace do Nascimento. Universidade Estadual de Feira de Santana. Department of Biological Science; BrasilFil: Lughadha, Eimear NIck. Royal Botanic Gardens; Reino UnidoFil: Peralta, Denilson. Instituto de Pesquisas Ambientais; BrazilFil: Prado, Jefferson. Instituto de Pesquisas Ambientais; BrasilFil: Roque, NĂĄdia. Universidade Federal da Bahia; BrasilFil: Stehmann, Joao. Universidade Federal de Minas Gerais; BrasilFil: da Silva Sylvestre, Lana. Universidade Federal do Rio de Janeiro; BrasilFil: Trierveiler-Pereira, Larissa. Universidade Estadual de MaringĂĄ. Departamento de AnĂĄlises ClĂ­nicas e Biomedicina; BrasilFil: Walter, Bruno Machado Teles. EMBRAPA Cenargen BrasĂ­lia; BrasilFil: ZimbrĂŁo, Geraldo. Universidade Federal do Rio de Janeiro; BrasilFil: Forzza, Rafaela C. Jardim BotĂąnico do Rio de Janeiro; BrasilFil: Morales, MatĂ­as. Instituto Nacional de TecnologĂ­a Agropecuaria (INTA). Instituto de Recursos BiolĂłgicos; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Universidad de MorĂłn. Facultad de AgronomĂ­a y Ciencias Agroalimentarias; Argentin

    Conceptual and empirical advances in Neotropical biodiversity research

    Get PDF
    The unparalleled biodiversity found in the American tropics (the Neotropics) has attracted the attention of naturalists for centuries. Despite major advances in recent years in our understanding of the origin and diversification of many Neotropical taxa and biotic regions, many questions remain to be answered. Additional biological and geological data are still needed, as well as methodological advances that are capable of bridging these research fields. In this review, aimed primarily at advanced students and early-career scientists, we introduce the concept of “trans-disciplinary biogeography,” which refers to the integration of data from multiple areas of research in biology (e.g., community ecology, phylogeography, systematics, historical biogeography) and Earth and the physical sciences (e.g., geology, climatology, palaeontology), as a means to reconstruct the giant puzzle of Neotropical biodiversity and evolution in space and time. We caution against extrapolating results derived from the study of one or a few taxa to convey general scenarios of Neotropical evolution and landscape formation. We urge more coordination and integration of data and ideas among disciplines, transcending their traditional boundaries, as a basis for advancing tomorrow’s ground-breaking research. Our review highlights the great opportunities for studying the Neotropical biota to understand the evolution of life.Keywords: Biogeography, Biotic diversification, Landscape evolution, Phylogeny, Scale, Biodiversity, Community ecology, Phylogeography, Phylogenetics, Tropics</div

    Framing the future for taxonomic monography: Improving recognition, support, and access

    Get PDF
    Taxonomic monographs synthesize biodiversity knowledge and document biodiversity change through recent and geological time for a particular organismal group, sometimes also incorporating cultural and place-based knowledge. They are a vehicle through which broader questions about ecological and evolutionary patterns and processes can be generated and answered (e.g., Muñoz Rodríguez et al., 2019). Chiefly, monography represents the foundational research upon which all biological work is based (Hamilton et al., 2021). Moreover, monography can be a pathway to developing inclusive scientific practices, engaging diverse audiences in expanding and disseminating indigenous and local knowledge and significance of place. Apart from the scientific importance of monography, these comprehensive biodiversity treatments are also crucial for policy, conservation, human wellbeing, and the sustainable use of natural resources. Taxonomic, cultural and biodiversity data within monographs aid in the implementation of law and policy, such as the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), the Nagoya Protocol of the Convention on Biological Diversity (Buck & Hamilton, 2011), and the International Union for Conservation of Nature (IUCN) Red List (e.g., Neo et al., 2017). While vital as a knowledge resource and tool for conservation and research, monographs are not available for many groups of organisms. This is of particular concern for organisms that are threatened with extinction, of medical or economic importance, and those organisms that have the potential to provide insight into biodiversity change over time because they are most susceptible to global change. In discussing the future of collections-based systematics, researchers have highlighted the importance of updated monographic workflows, collaborative teams, and effective ways to educate and disseminate the results of monographs to the public and scientific community (e.g., Wen et al., 2015; Grace et al., 2021). Here, we discuss how improving recognition, support, and access can lead to greater inclusivity while promoting a more active, sustainable, and collaborative outlook for monographic research. </p

    Checklist das Spermatophyta do Estado de SĂŁo Paulo, Brasil

    Full text link

    Floral traits measurements and phylogenetic distance matrices of Bignonieae.

    No full text
    Worksheets: 1- traits description; 2- traits measurements (herbarium specimens;) 3- genus phylogenetic distances matrix; 4- species phylogenetic distances matrix

    Taxonomic Revision of Xylophragma

    No full text
    • 

    corecore