392 research outputs found

    NuSTAR and Suzaku observations of the hard state in Cygnus X-1: locating the inner accretion disk

    Get PDF
    We present simultaneous Nuclear Spectroscopic Telescope Array (NuSTAR ) and Suzaku observations of the X-ray binary Cygnus X-1 in the hard state. This is the first time this state has been observed in Cyg X-1 with NuSTAR, which enables us to study the reflection and broad-band spectra in unprecedented detail. We confirm that the iron line cannot be fit with a combination of narrow lines and absorption features, and instead requires a relativistically blurred profile in combination with a narrow line and absorption from the companion wind. We use the reflection models of Garcia et al. (2014) to simultaneously measure the black hole spin, disk inner radius, and coronal height in a self-consistent manner. Detailed fits to the iron line profile indicate a high level of relativistic blurring, indicative of reflection from the inner accretion disk. We find a high spin, a small inner disk radius, and a low source height, and rule out truncation to greater than three gravitational radii at the 3{\sigma} confidence level. In addition, we find that the line profile has not changed greatly in the switch from soft to hard states, and that the differences are consistent with changes in the underlying reflection spectrum rather than the relativistic blurring. We find that the blurring parameters are consistent when fitting either just the iron line or the entire broad-band spectrum, which is well modelled with a Comptonized continuum plus reflection model.Comment: 12 pages, 7 figures, accepted for publication in Ap

    Measuring Black Hole Spin using X-ray Reflection Spectroscopy

    Full text link
    I review the current status of X-ray reflection (a.k.a. broad iron line) based black hole spin measurements. This is a powerful technique that allows us to measure robust black hole spins across the mass range, from the stellar-mass black holes in X-ray binaries to the supermassive black holes in active galactic nuclei. After describing the basic assumptions of this approach, I lay out the detailed methodology focusing on "best practices" that have been found necessary to obtain robust results. Reflecting my own biases, this review is slanted towards a discussion of supermassive black hole (SMBH) spin in active galactic nuclei (AGN). Pulling together all of the available XMM-Newton and Suzaku results from the literature that satisfy objective quality control criteria, it is clear that a large fraction of SMBHs are rapidly-spinning, although there are tentative hints of a more slowly spinning population at high (M>5*10^7Msun) and low (M<2*10^6Msun) mass. I also engage in a brief review of the spins of stellar-mass black holes in X-ray binaries. In general, reflection-based and continuum-fitting based spin measures are in agreement, although there remain two objects (GROJ1655-40 and 4U1543-475) for which that is not true. I end this review by discussing the exciting frontier of relativistic reverberation, particularly the discovery of broad iron line reverberation in XMM-Newton data for the Seyfert galaxies NGC4151, NGC7314 and MCG-5-23-16. As well as confirming the basic paradigm of relativistic disk reflection, this detection of reverberation demonstrates that future large-area X-ray observatories such as LOFT will make tremendous progress in studies of strong gravity using relativistic reverberation in AGN.Comment: 19 pages. To appear in proceedings of the ISSI-Bern workshop on "The Physics of Accretion onto Black Holes" (8-12 Oct 2012). Revised version adds a missing source to Table 1 and Fig.6 (IRAS13224-3809) and corrects the referencing of the discovery of soft lags in 1H0707-495 (which were in fact first reported in Fabian et al. 2009

    High-density disc reflection spectroscopy of low-mass active galactic nuclei

    Full text link
    The standard alpha-disc model predicts an anti-correlation between the density of the inner accretion disc and the black hole mass times square of the accretion rate, as seen in higher mass (MBH>106M⊙M_{\rm BH}>10^{6} M_{\odot}) active galactic nuclei (AGNs). In this work, we test the predictions of the alpha-disc model and study the properties of the inner accretion flow for the low-mass end (MBH≈105−6M⊙M_{\rm BH}\approx 10^{5-6}M_{\odot}) of AGNs. We utilize a new high-density disc reflection model where the density parameter varies from ne=1015n_{\rm e}=10^{15} to 102010^{20} cm−3^{-3} and apply it to the broadband X-ray (0.3-10 keV) spectra of the low-mass AGN sample. The sources span a wide range of Eddington fractions and are consistent with being sub-Eddington or near-Eddington. The X-ray spectra reveal a soft X-ray excess below ∌1.5\sim 1.5 keV which is well modeled by high-density reflection from an ionized accretion disc of density ne∌1018n_{\rm e}\sim 10^{18} cm−3^{-3} on average. The results suggest a radiation pressure-dominated disc with an average of 70% fraction of the disc power transferred to the corona, consistent with that observed in higher mass AGNs. We show that the disc density higher than 101510^{15} cm−3^{-3} can result from the radiation pressure compression when the disc surface does not hold a strong magnetic pressure gradient. We find tentative evidence for a drop in black hole spin at low-mass regimes.Comment: 20 pages, 10 figures, 6 tables. Accepted for publication in MNRA

    The 1.5 Ms observing campaign on IRAS 13224−3809 – I. X-ray spectral analysis

    Get PDF
    We present a detailed spectral analysis of the recent 1.5 Ms XMM–Newton observing campaign on the narrow-line Seyfert 1 galaxy IRAS 13224−3809, taken simultaneously with 500 ks of NuSTAR data. The X-ray light curve shows three flux peaks, registering at about 100 times the minimum flux seen during the campaign, and rapid variability with a time-scale of kiloseconds. The spectra are well fit with a primary power-law continuum, two relativistic-blurred reflection components from the inner accretion disc with very high iron abundance, and a simple blackbody-shaped model for the remaining soft excess. The spectral variability is dominated by the power-law continuum from a corona region within a few gravitational radii from the black hole. Additionally, blueshifted Ne X, Mg XII, Si XIV, and S XVI absorption lines are identified in the stacked low-flux spectrum, confirming the presence of a highly ionized outflow with velocity up to v = 0.267 and 0.225 c. We fit the absorption features with xstar models and find a relatively constant velocity outflow through the whole observation. Finally, we replace the bbody and supersolar abundance reflection models by fitting the soft excess successfully with the extended reflection model relxillD, which allows for higher densities than the standard relxill model. This returns a disc electron density n_e > 10^(18.7) cm^(−3) and lowers the iron abundance from Z_(Fe) = 24^(+3)_(−4)Z_⊙ with n-e = 10^(15) cm^(-3) to Z_(Fe) = 6.6^(+0.8)_(-2.1)Z_⊙

    Neutrinos below 100 TeV from the southern sky employing refined veto techniques to IceCube data

    Get PDF
    Many Galactic sources of gamma rays, such as supernova remnants, are expected to produce neutrinos with a typical energy cutoff well below 100 TeV. For the IceCube Neutrino Observatory located at the South Pole, the southern sky, containing the inner part of the Galactic plane and the Galactic Center, is a particularly challenging region at these energies, because of the large background of atmospheric muons. In this paper, we present recent advancements in data selection strategies for track-like muon neutrino events with energies below 100 TeV from the southern sky. The strategies utilize the outer detector regions as veto and features of the signal pattern to reduce the background of atmospheric muons to a level which, for the first time, allows IceCube searching for point-like sources of neutrinos in the southern sky at energies between 100 GeV and several TeV in the muon neutrino charged current channel. No significant clustering of neutrinos above background expectation was observed in four years of data recorded with the completed IceCube detector. Upper limits on the neutrino flux for a number of spectral hypotheses are reported for a list of astrophysical objects in the southern hemisphere.Comment: 19 pages, 17 figures, 2 table

    Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data

    Get PDF
    We report a quasi-differential upper limit on the extremely-high-energy (EHE) neutrino flux above 5×1065\times 10^{6} GeV based on an analysis of nine years of IceCube data. The astrophysical neutrino flux measured by IceCube extends to PeV energies, and it is a background flux when searching for an independent signal flux at higher energies, such as the cosmogenic neutrino signal. We have developed a new method to place robust limits on the EHE neutrino flux in the presence of an astrophysical background, whose spectrum has yet to be understood with high precision at PeV energies. A distinct event with a deposited energy above 10610^{6} GeV was found in the new two-year sample, in addition to the one event previously found in the seven-year EHE neutrino search. These two events represent a neutrino flux that is incompatible with predictions for a cosmogenic neutrino flux and are considered to be an astrophysical background in the current study. The obtained limit is the most stringent to date in the energy range between 5×1065 \times 10^{6} and 5×10105 \times 10^{10} GeV. This result constrains neutrino models predicting a three-flavor neutrino flux of $E_\nu^2\phi_{\nu_e+\nu_\mu+\nu_\tau}\simeq2\times 10^{-8}\ {\rm GeV}/{\rm cm}^2\ \sec\ {\rm sr}at at 10^9\ {\rm GeV}$. A significant part of the parameter-space for EHE neutrino production scenarios assuming a proton-dominated composition of ultra-high-energy cosmic rays is excluded.Comment: The version accepted for publication in Physical Review

    Book Reviews

    Get PDF
    With the observation of high-energy astrophysical neutrinos by the IceCube Neutrino Observatory, interest has risen in models of PeV-mass decaying dark matter particles to explain the observed flux. We present two dedicated experimental analyses to test this hypothesis. One analysis uses 6 years of IceCube data focusing on muon neutrino ‘track’ events from the Northern Hemisphere, while the second analysis uses 2 years of ‘cascade’ events from the full sky. Known background components and the hypothetical flux from unstable dark matter are fitted to the experimental data. Since no significant excess is observed in either analysis, lower limits on the lifetime of dark matter particles are derived: we obtain the strongest constraint to date, excluding lifetimes shorter than 102810^{28} s at 90% CL for dark matter masses above 10 TeV

    Search for transient optical counterparts to high-energy IceCube neutrinos with Pan-STARRS1

    Get PDF
    In order to identify the sources of the observed diffuse high-energy neutrino flux, it is crucial to discover their electromagnetic counterparts. IceCube began releasing alerts for single high-energy (E>60E > 60 TeV) neutrino detections with sky localisation regions of order 1 deg radius in 2016. We used Pan-STARRS1 to follow-up five of these alerts during 2016-2017 to search for any optical transients that may be related to the neutrinos. Typically 10-20 faint (m<22.5m < 22.5 mag) extragalactic transients are found within the Pan-STARRS1 footprints and are generally consistent with being unrelated field supernovae (SNe) and AGN. We looked for unusual properties of the detected transients, such as temporal coincidence of explosion epoch with the IceCube timestamp. We found only one transient that had properties worthy of a specific follow-up. In the Pan-STARRS1 imaging for IceCube-160427A (probability to be of astrophysical origin of ∌\sim50 %), we found a SN PS16cgx, located at 10.0' from the nominal IceCube direction. Spectroscopic observations of PS16cgx showed that it was an H-poor SN at z = 0.2895. The spectra and light curve resemble some high-energy Type Ic SNe, raising the possibility of a jet driven SN with an explosion epoch temporally coincident with the neutrino detection. However, distinguishing Type Ia and Type Ic SNe at this redshift is notoriously difficult. Based on all available data we conclude that the transient is more likely to be a Type Ia with relatively weak SiII absorption and a fairly normal rest-frame r-band light curve. If, as predicted, there is no high-energy neutrino emission from Type Ia SNe, then PS16cgx must be a random coincidence, and unrelated to the IceCube-160427A. We find no other plausible optical transient for any of the five IceCube events observed down to a 5σ\sigma limiting magnitude of m∌22m \sim 22 mag, between 1 day and 25 days after detection.Comment: 20 pages, 6 figures, accepted to A&

    HEX-P: the High-Energy X-Ray Probe

    Get PDF
    The High-Energy X-ray Probe (HEX-P) is a next-generation high-energy X-ray observatory with broadband (2-200 keV) response that has 40 times the sensitivity of any previous mission in the 10-80 keV band and > 100 times the sensitivity of any previous mission in the 80-200 keV band. With this leap in observational capability, HEX-P will address a broad range of science objectives beyond any planned mission in the hard X-ray bandpass. HEX-P will probe the extreme environments around black holes and neutron stars, map the growth of supermassive black holes, and quantify the effect they have on their environments. HEX-P will resolve the hard X-ray emission from dense regions of our Galaxy to understand the high- energy source populations and investigate dark matter candidate particles through their decay channel signatures. If developed and launched on a timescale similar to Athena, the complementary abilities of the two missions will greatly enhance the Communitys ability to address the important science questions of the hot universe. HEX-P addresses science that is not planned by any flagship-class missions, and is beyond the capability of an Explorer-class mission

    Intensive disc-reverberation mapping of Fairall 9 : 1st year of Swift & LCO monitoring

    Get PDF
    Funding: UK STFC grant ST/R000824/1 (KH).We present results of time-series analysis of the first year of the Fairall 9 intensive disc-reverberation campaign. We used Swift and the Las Cumbres Observatory global telescope network to continuously monitor Fairall 9 from X-rays to near-infrared at a daily to sub-daily cadence. The cross-correlation function between bands provides evidence for a lag spectrum consistent with the τ ∝ λ4/3 scaling expected for an optically thick, geometrically thin blackbody accretion disc. Decomposing the flux into constant and variable components, the variable component's spectral energy distribution is slightly steeper than the standard accretion disc prediction. We find evidence at the Balmer edge in both the lag and flux spectra for an additional bound-free continuum contribution that may arise from reprocessing in the broad-line region. The inferred driving light curve suggests two distinct components, a rapidly variable ( 100 days) component with an opposite lag to the reverberation signal.PostprintPeer reviewe
    • 

    corecore