301 research outputs found

    Nutrient Source and Tillage Effects on Maize: I. Micrometeorological Methods for Measuring Carbon Dioxide Emissions

    Get PDF
    There is a need to understand the potential benefits of using the biotechnology waste by‐product from manufacturing as a fertilizer replacement in agriculture, by quantifying the economic value for the farmer and measuring the environmental impact. Measuring CO2 emissions can be used to assess environmental impact, including three widely used micrometeorological methodologies: (i) the Bowen Ratio Energy Balance (BREB), (ii) aerodynamic flux‐gradient theory, and (iii) eddy covariance (EC). As a first step in quantifying benefits of applying biotechnology waste in agriculture, a detailed examination of these three methods was conducted to understand their effectiveness in quantifying CO2 emissions for this specific circumstance. The study measured micrometeorological properties over a field planted to maize (Zea mays L. var. indentata ), one plot treated with biotechnology waste applied as a nutrient amendment, and one plot treated with a typical farmer fertilizer practice. Carbon dioxide flux measurements took place over 1 yr, using both BREB and EC systems. The aerodynamic method was used to gap‐fill BREB system measurements, and those flux estimates were compared with estimates produced separately by the aerodynamic and EC methods. All methods found greater emissions over the biotechnology waste application. The aerodynamic method CO2 flux estimates were considerably greater than both the EC and a combined BREB‐aerodynamic approach. During the day, the EC and BREB methods agree. At night, the aerodynamic approach detects and accounts for buildup of CO2 at the surface during stable periods. The BREB systems combined with aerodynamic approaches provide alternate methods to EC in examining micrometeorological properties near the surface

    Beneficial effect of early initiation of lipid-lowering therapy following renal transplantation

    Get PDF
    Background. Renal transplant recipients have a significantly reduced life expectancy, largely due to premature cardiovascular disease. The aim of the current analysis was to investigate the importance of time of initiation of therapy after transplantation, on the benefits of statin therapy. Methods. 2102 renal transplant recipients with total cholesterol levels of 4.0-9.0 mmol/l were randomly assigned to treatment with fluvastatin (n = 1050) or placebo (n = 1052) and followed for a mean time of 5.1 years. The end-points were major cardiac events. The average median time from transplantation to randomization was 4.5 years (range: 0.5-29 years). Results. In patients starting treatment with fluvastatin 6 years, respectively. The risk reduction for patients initiating therapy with fluvastatin at years 0-2 (compared with >6 years) following transplantation was 59% (RR: 0.41; 95% CI: 0.18-0.92; P = 0.0328). This is also reflected in total time on renal replacement therapy: in patients in the first quartile (120 months) (P = 0.033). Conclusions. Our data support an early introduction of fluvastatin therapy in a population of transplant recipients at high risk of premature coronary heart diseas

    Epidemiological, clinical and genetic aspects of adult onset isolated focal dystonia in Ireland

    Get PDF
    Background: Adult onset idiopathic isolated focal dystonia presents with a number of phenotypes. Reported prevalence rates vary considerably; well-characterized cohorts are important to our understanding of this disorder. Aim: To perform a nationwide epidemiological study of adult onset idiopathic isolated focal dystonia in the Republic of Ireland. Methods: Patients with adult onset idiopathic isolated focal dystonia were recruited from multiple sources. Diagnosis was based on assessment by a neurologist with an expertise in movement disorders. When consent was obtained, a number of clinical features including family history were assessed. Results: On the prevalence date there were 592 individuals in Ireland with adult onset idiopathic isolated focal dystonia, a point prevalence of 17.8 per 100 000 (95% confidence interval 16.4-19.2). Phenotype numbers were cervical dystonia 410 (69.2%), blepharospasm 102 (17.2%), focal hand dystonia 39 (6.6%), spasmodic dysphonia 18 (3.0%), musician\u27s dystonia 17 (2.9%) and oromandibular dystonia six (1.0%). Sixty-two (16.5%) of 375 consenting index cases had a relative with clinically confirmed adult onset idiopathic isolated focal dystonia (18 multiplex and 24 duplex families). Marked variations in the proportions of patients with tremor, segmental spread, sensory tricks, pain and psychiatric symptoms by phenotype were documented. Conclusions: The prevalence of adult onset idiopathic isolated focal dystonia in Ireland is higher than that recorded in many similar service-based epidemiological studies but is still likely to be an underestimate. The low proportion of individuals with blepharospasm may reflect reduced environmental exposure to sunlight in Ireland. This study will serve as a resource for international comparative studies of environmental and genetic factors in the pathogenesis of the disorder

    Opportunities for behavioral rescue under rapid environmental change

    Get PDF
    Laboratory measurements of physiological and demographic tolerances are important in understanding the impact of climate change on species diversity; however, it has been recognized that forecasts based solely on these laboratory estimates overestimate risk by omitting the capacity for species to utilize microclimatic variation via behavioral adjustments in activity patterns or habitat choice. The complex, and often context‐dependent nature, of microclimate utilization has been an impediment to the advancement of general predictive models. Here, we overcome this impediment and estimate the potential impact of warming on the fitness of ectotherms using a benefit/cost trade‐off derived from the simple and broadly documented thermal performance curve and a generalized cost function. Our framework reveals that, for certain environments, the cost of behavioral thermoregulation can be reduced as warming occurs, enabling behavioral buffering (e.g., the capacity for behavior to ameliorate detrimental impacts) and “behavioral rescue” from extinction in extreme cases. By applying our framework to operative temperature and physiological data collected at an extremely fine spatial scale in an African lizard, we show that new behavioral opportunities may emerge. Finally, we explore large‐scale geographic differences in the impact of behavior on climate‐impact projections using a global dataset of 38 insect species. These multiple lines of inference indicate that understanding the existing relationship between thermal characteristics (e.g., spatial configuration, spatial heterogeneity, and modal temperature) is essential for improving estimates of extinction risk

    Plasmodium-associated changes in human odor attract mosquitoes.

    Get PDF
    Malaria parasites (Plasmodium) can change the attractiveness of their vertebrate hosts to Anopheles vectors, leading to a greater number of vector-host contacts and increased transmission. Indeed, naturally Plasmodium-infected children have been shown to attract more mosquitoes than parasite-free children. Here, we demonstrate Plasmodium-induced increases in the attractiveness of skin odor in Kenyan children and reveal quantitative differences in the production of specific odor components in infected vs. parasite-free individuals. We found the aldehydes heptanal, octanal, and nonanal to be produced in greater amounts by infected individuals and detected by mosquito antennae. In behavioral experiments, we demonstrated that these, and other, Plasmodium-induced aldehydes enhanced the attractiveness of a synthetic odor blend mimicking "healthy" human odor. Heptanal alone increased the attractiveness of "parasite-free" natural human odor. Should the increased production of these aldehydes by Plasmodium-infected humans lead to increased mosquito biting in a natural setting, this would likely affect the transmission of malaria

    Twenty-first century reversal of the surface ozone seasonal cycle over the northeastern United States

    Get PDF
    Changing emissions can alter the surface O3 seasonal cycle, as detected from northeastern U.S. (NE) observations during recent decades. Under continued regional precursor emission controls (>80% decreases in NE NOx by 2100), the NE surface O3 seasonal cycle reverses (to a winter maximum) in 21st century transient chemistry-climate simulations. Over polluted regions, regional NOx largely controls the shape of surface O3 seasonal cycles. In the absence of regional NOx controls, climate warming contributes to a higher surface O3 summertime peak over the NE. A doubling of the global CH4 abundance by 2100 partially offsets summertime surface O3 decreases attained via NOx reductions and contributes to raising surface O3 during December–March when the O3 lifetime is longer. The similarity between surface O3 seasonal cycles over the NE and the Intermountain West by 2100 indicates a NE transition to a region representative of baseline surface O3 conditions

    Results from the centers for disease control and prevention's predict the 2013-2014 Influenza Season Challenge

    Get PDF
    Background: Early insights into the timing of the start, peak, and intensity of the influenza season could be useful in planning influenza prevention and control activities. To encourage development and innovation in influenza forecasting, the Centers for Disease Control and Prevention (CDC) organized a challenge to predict the 2013-14 Unites States influenza season. Methods: Challenge contestants were asked to forecast the start, peak, and intensity of the 2013-2014 influenza season at the national level and at any or all Health and Human Services (HHS) region level(s). The challenge ran from December 1, 2013-March 27, 2014; contestants were required to submit 9 biweekly forecasts at the national level to be eligible. The selection of the winner was based on expert evaluation of the methodology used to make the prediction and the accuracy of the prediction as judged against the U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet). Results: Nine teams submitted 13 forecasts for all required milestones. The first forecast was due on December 2, 2013; 3/13 forecasts received correctly predicted the start of the influenza season within one week, 1/13 predicted the peak within 1 week, 3/13 predicted the peak ILINet percentage within 1 %, and 4/13 predicted the season duration within 1 week. For the prediction due on December 19, 2013, the number of forecasts that correctly forecasted the peak week increased to 2/13, the peak percentage to 6/13, and the duration of the season to 6/13. As the season progressed, the forecasts became more stable and were closer to the season milestones. Conclusion: Forecasting has become technically feasible, but further efforts are needed to improve forecast accuracy so that policy makers can reliably use these predictions. CDC and challenge contestants plan to build upon the methods developed during this contest to improve the accuracy of influenza forecasts. © 2016 The Author(s)

    Resistance to autosomal dominant Alzheimer's disease in an APOE3 Christchurch homozygote: a case report.

    Get PDF
    We identified a PSEN1 (presenilin 1) mutation carrier from the world's largest autosomal dominant Alzheimer's disease kindred, who did not develop mild cognitive impairment until her seventies, three decades after the expected age of clinical onset. The individual had two copies of the APOE3 Christchurch (R136S) mutation, unusually high brain amyloid levels and limited tau and neurodegenerative measurements. Our findings have implications for the role of APOE in the pathogenesis, treatment and prevention of Alzheimer's disease
    • 

    corecore