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Abstract
Laboratory measurements of physiological and demographic tolerances are impor‐
tant in understanding the impact of climate change on species diversity; however, it 
has been recognized that forecasts based solely on these laboratory estimates overes‐
timate risk by omitting the capacity for species to utilize microclimatic variation via 
behavioral adjustments in activity patterns or habitat choice. The complex, and often 
context‐dependent nature, of microclimate utilization has been an impediment to the 
advancement of general predictive models. Here, we overcome this impediment and 
estimate the potential impact of warming on the fitness of ectotherms using a benefit/
cost trade‐off derived from the simple and broadly documented thermal performance 
curve and a generalized cost function. Our framework reveals that, for certain envi‐
ronments, the cost of behavioral thermoregulation can be reduced as warming occurs, 
enabling behavioral buffering (e.g., the capacity for behavior to ameliorate detrimen‐
tal impacts) and “behavioral rescue” from extinction in extreme cases. By applying our 
framework to operative temperature and physiological data collected at an extremely 
fine spatial scale in an African lizard, we show that new behavioral opportunities may 
emerge. Finally, we explore large‐scale geographic differences in the impact of behavior 
on climate‐impact projections using a global dataset of 38 insect species. These mul‐
tiple lines of inference indicate that understanding the existing relationship between 
thermal characteristics (e.g., spatial configuration, spatial heterogeneity, and modal 
temperature) is essential for improving estimates of extinction risk. 

Keywords behavioral thermoregulation, climate change, ecological forecasting, envi‐
ronmental variation, macrophysiology, temperature   

1  Introduction 

A critical challenge in current ecological research is to understand how 
environmental temperature regimes limit the abundance and distribu‐
tion of species with sufficient accuracy to enable predictions of the fu‐
ture effects of climate change (Kearney, Shine, & Porter, 2009; Porter & 
Kearney, 2009; Williams, Shoo, Isaac, Hoffmann, & Langham, 2008). Re‐
cent advances have emphasized organismal traits, such as the thermal 
dependence of population growth rate, as the mechanistic basis for un‐
derstanding how changing environmental conditions may determine 
the vulnerability of populations (particularly ectotherm populations) 
to extinction (Dell, Pawar, & Savage, 2013; Kearney & Porter, 2009; Ke‐
arney et al., 2009; Litchman & Klausmeier, 2008; Sinervo et al., 2010). 
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However, while thermal performance traits are usually assessed in con‐
trolled laboratory conditions, performance in nature is mediated by the 
ability of ectothermic organisms to manage their body temperature be‐
haviorally (Buckley, Ehrenberger, & Angilletta, 2015; Long et al., 2014; 
Porter & Gates, 1969). In addition to the physiological mechanisms used 
to heat and cool their bodies (Holland, Brill, Chang, Sibert, & Fournier, 
1992), ectotherms regulate their body temperature through microhab‐
itat choice (Huey, 1974; Logan, Huynh, Precious, & Calsbeek, 2013; Por‐
ter, Mitchell, Beckman, & DeWitt, 1973; Scheffers, Edwards, Diesmos, 
Williams, & Evans, 2014; Scheffers, Evans, Williams, & Edwards, 2014; 
Woods, Dillon, & Pincebourde, 2015), thereby expending energy to seek 
out areas within their habitat that are thermally favorable (e.g., behav‐
iorally thermoregulating; Kearney et al., 2009; Sears et al., 2016; Sun‐
day et al., 2016). The decision to thermoregulate or thermoconform has 
been shown to depend on the cost of thermoregulation (Huey, 1974; 
Huey & Slatkin, 1976); these costs are strongly dependent on the spa‐
tial structure of the thermal environment (Huang, Porter, Ming‐Chung, 
& Chiou, 2014; Pincebourde, Murdock, Vickers, & Sears, 2016; Sears et 
al., 2016) and have been refined by recent advances in the resolution of 
spatial data at the small and microscales important for many ectotherms 
(Logan et al., 2013; Scheffers, Edwards, et al., 2014; Scheffers, Evans, et 
al., 2014; Woods et al., 2015). Therefore, accurate ecological forecasts 
amidst climate warming necessitate a tractable approach for harmo‐
nizing how these categories of environmental and organismal data in‐
form each other. 

Despite decades of research highlighting the importance of behavior 
to mediate fitness, animal behavior has been excluded from many recent 
broad‐scale climate‐impact projections (Deutsch et al., 2008; Thomas, 
Kremer, Klausmeier, & Litchman, 2012; Vasseur et al., 2014), which gen‐
erates several potential sources of potential bias. First, assuming move‐
ment behavior is adaptive (i.e., that it increases physiological perfor‐
mance) forecasts ignoring behavior will generally overemphasize the 
detrimental impacts of warming (Pincebourde et al., 2016), particularly 
when the net benefits of behavioral thermoregulation remain high dur‐
ing periods of elevated environmental temperatures (Sears, Raskin, & 
Angilletta, 2011). Indeed, the ability of organisms to behaviorally ther‐
moregulate currently enables the persistence of populations in environ‐
ments that would otherwise exceed physiological limits (Sunday et al., 
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2016), and is predicted to be a key ecological feature enabling the per‐
sistence of populations in response to sustained climate warming (Huey 
et al., 2012; Kearney et al., 2009; Sears et al., 2016). Yet, the anticipated 
net benefits of thermoregulatory behaviors will vary dramatically across 
organisms and ecosystems—ranging from situations where environmen‐
tal warming may provide new opportunities for behavior to increase 
fitness above current levels (Huey, Hertz, & Sinervo, 2003; Logan et al., 
2013) to instances where, despite movement abilities and the capacity 
for behavioral thermoregulation, climate warming will likely restrict the 
ability of organisms to survive and reproduce (Caillon, Suppo, Jérôme 
Casas, Woods, & Pincebourde, 2014; Sinervo et al., 2010). As such, un‐
derstanding how to modify macroecological patterns of climate impact 
projections to include behavior is of high priority. 

The factors influencing decisions surrounding behavioral thermoreg‐
ulation are myriad (Basson, Levy, Angilletta, & Clusella‐Trullas, 2017; 
Porter et al., 1973; Sears et al., 2016), but the winning thermoregulatory 
strategy ultimately depends on the relative costs and benefits associ‐
ated with movement behavior (Huey, 1974; Huey & Slatkin, 1976). While 
much research has focused on how features of organisms (e.g., body size, 
velocity, reliance on evaporative cooling; Huey et al., 2012; Huey & Slat‐
kin, 1976; Kearney et al., 2009; Porter & Kearney, 2009; Shine & Kear‐
ney, 2001; Sunday et al., 2016) or properties of the environment (e.g., the 
available and configuration of preferred thermal habitat, or the modal 
environmental temperature) impact the costs of behavioral thermoreg‐
ulation and ultimately fitness (Huey & Slatkin, 1976; Logan, Fernandez, 
& Calsbeek, 2015; Logan et al., 2013; Martin & Huey, 2008; Sears et al., 
2016, 2011), little emphasis has been placed on understanding how the 
existing relationship between thermal characteristics may influence the 
costs associated with behavioral thermoregulation. Yet, these relation‐
ships (e.g., the existence of a correlation between spatial heterogene‐
ity and mean temperature) define the conditions over which costs and 
benefits of thermoregulation will be realized during environmental ex‐
tremes and ultimately shape the constraints and opportunities for be‐
havior to rescue populations from being locally extirpated amidst chang‐
ing climatic conditions. 

Here, we identify that, and explore how, existing relationships be‐
tween thermal characteristics can constrain or enable opportunities for 
behavioral thermoregulation amidst warming. We begin by presenting 
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a general framework that incorporates thermal physiology and spatio‐
temporal variability in environmental temperature to predict thermo‐
regulatory behavior and ultimately the performance of ectotherms in 
nature. Our approach is not intended to displace the important and nec‐
essary work on the physics and physiology of behavioral thermoregu‐
lation (e.g., Kearney & Porter, 2009; Shine & Kearney, 2001), rather to 
describe the environmental conditions that are most ripe for behav‐
ior to play an important role under climate change and to expand our 
ability to update the extinction budget for larger classes of organisms. 
We use this approach to explore how relationships between the spatial 
mean temperature and the costs of behavioral thermoregulation can in‐
fluence estimates of fitness. Next, using highly resolved environmental 
and physiological data from an African lizard, we highlight how warm‐
ing may provide new opportunities for thermoregulation by altering its 
underlying cost. Finally, we explore large‐scale geographic differences 
in the predicted impact of behavior on climate‐impact projections us‐
ing a global dataset of 38 insect species and a set of hypotheses about 
the change in spatial microclimate variation with climate change. Collec‐
tively our results indicate that the relationship between the mean tem‐
perature, the costs of behavioral thermoregulation, and the structure of 
microclimatic variation, should be a focal consideration in ongoing cli‐
mate change research.  

2  Theoretical framework 

Our framework predicts field performance, which we define as the time‐
average realized value of the aggregate of vital physiological processes 
affecting an individual in a spatiotemporally variable environment. We 
use the term “field performance” instead of “fitness” because most mea‐
sures of performance (e.g., survival, swimming speed, eggs produced) do 
not wholly define the absolute fitness of an individual (Angilletta, 2009; 
Logan et al., 2013). Field performance can be measured over many indi‐
viduals in a population to develop a metric of mean population fitness. 
We develop a cost‐benefit model that identifies the body temperature 
for an individual organism that maximizes performance given its ther‐
mal physiology, the current state of the thermal environment, and the 
costs associated with locomotion to a different microclimate within the 
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broader environment. Here, the thermal environment is represented by 
a multidimensional, spatially explicit thermal landscape, 𝕋, that is di‐
vided into regular discrete microhabitats on a scale that is biologically 
relevant to the individual organism and characterized by known proba‐
bility density and autocorrelation functions (Figure 1a). In the absence 
of behavioral thermoregulation, we assume that an individual is situ‐
ated at the modal value in this landscape and that its body temperature 
(Tb) mimics that of its current microhabitat, such that Tb =  𝕋–, which is 
true so long as the distribution of temperatures across the landscape is 
unimodal without skewness. The performance of this individual across 
different body temperatures is given by the thermal performance curve, 
P(Tb) (Figure 1b,c, thick black curve). This curve is commonly measured 
under constant laboratory conditions and has well‐studied properties 
(Angilletta, 2006; Deutsch et al., 2008; Thomas et al., 2012). Various 
mathematical relationships have been proposed to describe P(Tb) (An‐
gilletta, 2006; Deutsch et al., 2008; Sears & Angilletta, 2015; Thomas et 
al., 2017); here, we use the unimodal function 

P(T) =b1 exp (b2 T ) – (d0 + d1 exp (d2 T)),

where the first and second terms of this function correspond to the ef‐
fect of temperature on birth and death rates, respectively (Thomas et 
al., 2017). 

The benefit (measured in the currency of field performance) of al‐
tering body temperature from the initial condition,  𝕋–, is given by the 
performance differential (Figure 1b,c, dashed axes with origin (𝕋–, P 𝕋–)): 

B(Tb, 𝕋– ) = P(Tb) – P( 𝕋– )                                       (1)

We assume that benefits arise via locomotion to a more favorable lo‐
cation; however, Equation (1) is general for any form of thermoregula‐
tion. The benefit function (Equation 1) implicitly integrates all mainte‐
nance costs that are not directly associated with thermoregulation, and, 
therefore, yields negative values whenever maintenance costs exceed 
energetic benefits. Huey and Slatkin (1976) suggested that the remain‐
ing costs of thermoregulation (those not associated with maintenance; 
e.g., the energetic costs of locomotion) should be an increasing function 
of the difference between body temperature and the initial condition  
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(ΔTb =Tb − 𝕋–) to reflect the growing costs of maintaining body temper‐
atures that deviate further from the modal temperature of the environ‐
ment. For behavioral thermoregulation, energetic costs can be influ‐
enced by the distribution and spatial configuration of environmental 

Figure 1 A framework for estimating the performance consequences of behavioral 
thermoregulation in warming environments. (a) A thermal environment, blue 𝕋c, rep‐
resents cool conditions (top left). Warmed environments (red 𝕋w) have increased mean 
temperatures, 𝕋– and relative to cool conditions, are otherwise identical (top right), 
have increased spatial heterogeneity (bottom left), or have increased spatial autocor‐
rection (bottom right). (b, c) How warming impacts future performance depends on 
the magnitude of increase of 𝕋– and the cost of behavioral thermoregulation within 𝕋w. 
The thermal performance curve (thick black curve) defines the relationship between 
body temperature, Tb, and performance, P. For an environment with mean temper‐
ature 𝕋–, the benefit, B, from altering body temperature from Tb = 𝕋–  is defined by ΔP 
relative to P (Tb = 𝕋– ). The cost of altering body temperature is defined by a cost func‐
tion C: blue curve in (b) represents the cost function for the cool environment and red 
curve in (c) represents the cost function for a hypothetical warmed environment that 
has reduced costs of behavioral thermoregulation. The predicted P and Tb for a given 
𝕋 is calculated as the temperature that maximizes P given B and C.   
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temperatures (Huey, 1974; Sears et al., 2016), the morphology, body 
size, physiology, and search efficiency of the organism, and costs from 
antagonistic interactions with con‐ and hetero‐specifics (Adolph & Por‐
ter, 1993; Grant & Porter, 1992). For these reasons, we define a flexible 
and symmetric cost function as: 

C(|Tb –  𝕋–|) =  β (Tb –  𝕋– )2

                          2                                               (2)

where β is a positive‐valued parameter that determines the second de‐
rivative of the cost function with respect to the absolute temperature 
deviation |Tb − 𝕋–|. Large values of β generate a steep function to rep‐
resent a high cost of thermoregulation, whereas low values generate a 
flatter function to represent a low cost (Figure 1b blue line = high β; 
Figure 1c red line = low β). Our simulations of the energetic costs of 
movement by organisms using different thermoregulatory behaviors 
and occurring in thermal environments that differ in the extent, auto‐
correlation, and distribution of thermal spatial heterogeneity (Figures 
S1–S7, Appendix 1), reveal that Equation (2) can accurately represent 
the energetic costs associated with locating favorable microhabitats 
(Figures S1–S7). We assume a linear relationship between the ener‐
getic costs of movement and the other environmental and ecological 
attributes that will influence movement (e.g., threats experienced from 
predators; Waldschmidt, Jones, & Porter, 1986). However, ecological 
factors associated with specific thermal environments (e.g., high re‐
source densities disproportionally occurring in suboptimal thermal 
environments) may nonlinearly change the shape of the cost function 
or may result in unanticipated advantages (Fey & Vasseur, 2016; Rusch 
& Angilletta, 2017). Thus, the ways in which multiple, sometimes com‐
peting factors impact the measured cost functions remains an impor‐
tant avenue for future research. 

Given the benefit and cost functions, the body temperature that max‐
imizes individual performance is that which maximizes the difference 
between B(Tb, 𝕋–) – C(|Tb − 𝕋–|) (Tb in Figure 1b,c), for example, the con‐
ditions that maximize the selective advantage defined by 

(B (Tb, 𝕋– ) – B(Tb = 𝕋–, 𝕋– )) – (C(Tb − 𝕋–|) – C(|Tb = 𝕋–|)). 
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We refer to this as the predicted body temperature in the field. In the 
limiting case, when the costs of thermoregulation are extremely low, 
the performance associated with the predicted body temperature in 
the field approaches the maximum value defined by the thermal per‐
formance curve, regardless of mean environmental temperature. Al‐
ternatively, when the costs of thermoregulation are exceedingly high, 
performance converges on that predicted by P(𝕋–). In our framework 
these two limiting cases (perfect thermoregulation and perfect ther‐
moconformity) form the end points on a continuum of potential be‐
havioral strategies (Huey & Slatkin, 1976). 

Changes to the distribution and autocorrelation of 𝕋    have different 
effects on the benefit and cost functions. Alterations to 𝕋 generate a 
translation of the benefit function but do not alter its shape (e.g., shift‐
ing 𝕋– to the optimal value for performance shifts the entire benefit func‐
tion to values ≤0); however, the cost function does not display a simple 
mechanistic response. In all likelihood, the cost parameter β is intricately 
linked to the thermal landscape. For example, it is likely that β scales in‐
versely with the spatial variance of 𝕋 if this increases the frequency of 
desirable conditions in the landscape (Figure S2). Likewise, spatial au‐
tocorrelation can greatly alter travel distances between patches of simi‐
lar and disparate conditions with greater spatial autocorrelation result‐
ing in higher costs of thermoregulatory behavior (Huey, 1974; Sears & 
Angilletta, 2015; Figure S1). Without loss of generality, we subsequently 
examine scenarios where an increase in the mean temperature of the 
landscape 𝕋 is coupled either to a decrease, an increase, or no change 
in the costs of thermoregulatory behavior. 

3  Materials and methods 

3.1  Mathematical model and analysis of global insect database 

We used a cost function with a positive second derivative (see Appen‐
dix S1, Figures S1–S7) to explore how different cost scenarios impact 
estimates of performance. Benefit functions for each of these species 
that describe performance in relation to temperature can be derived 
from thermal performance curves. For the cost function, however, 
we have no a priori expectation for how differences among species,  
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habitat, geolocation, and life history are manifested. We instead employed 
a set of nine cost scenarios that arise from crossing three assumptions 
about the basal cost of thermoregulation b0 = {0.15, 0.5, 2.0}, with three  
assumptions about the temperature dependence of such costs  
b1 = {−1, 0, 1} using Equation 2 (Figure S8). Based on the ability of some 
species to maintain stable body temperatures in spatially heteroge‐
neous environments with high mean temperatures (Sears et al., 2016), 
the lower end of the costs represent a conservative estimate of the con‐
ditions that wild organisms face in nature. 

Estimates of performance for a hypothetical organism were deter‐
mined based on a benefit function defined by 

w(Tb) = a × exp (b × Tb) − [c + d × exp (e × Tb)] 

(Thomas et al., 2017), and by previously described thermal fitness 
curves for the insect database compiled by Deutsch et al. (2008). For 
many representations of w(Tb), the body temperature that maximizes 
fitness can be analytically solved as a function of Tb; however, the use of 
a piecewise function for thermal performance (e.g., those in Deutsch et 
al., 2008) requires numerical maximization. The insect analysis of his‐
toric (the decade proceeding when the thermal performance curve was 
described) and future (2050–2059) temperature distributions were de‐
termined according to the previously described methods (Vasseur et 
al., 2014) based on low‐cost (Figures 2c and 4) or multiple‐cost envi‐
ronments (Figure S9). We consider a mean performance at or below 0, 
equivalent to local extirpation of the population. Computations were 
performed using Mathematica v. 10.0.   

3.2  Southern rock agama data collection and analysis 

The southern rock agama (Agama atra) is a highly territorial, insectiv‐
orous lizard that lives on rock outcrops throughout a large portion of 
Southern Africa. Males actively defend small territories that are typically 
composed of several adjacent boulders. We characterized the thermal 
heterogeneity of three individual lizard territories  at Jonaskop (~34°S, 
1,500 m a.s.l.), Western Cape Province, South Africa using 30 physical 
models in each territory (“operative temperature models” or OTMs; see 
Appendix S2). Subsequently, we measured the thermal dependence of 
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the running speed of 37 adult male lizards at the same site across a 
range of body temperatures: 15, 25, 30, 35, 38, 42, and 44°C (see de‐
tailed methods in Appendix S2, Figure S10, Table S2). 

We determined the relationship between the cost of thermoregula‐
tion and the spatial mean temperature, as well as between spatial stan‐
dard deviation and mean temperature using fixed effects linear models. 

Figure 2 The extent to which thermoregulatory behavior modifies population fitness 
depends on its cost. (a) Three scenarios for whether the cost of behavioral thermo‐
regulation decreases (blue, A1), is invariant (yellow, A2), or increases (green, A3) with 
an increase in mean temperature, 𝕋– . Predicted body temperatures (b; left panel) and 
corresponding performance (b; right panel) for a hypothetical organism based on en‐
vironments with different relationships between 𝕋– and cost scaling scenarios; black 
lines show a scenario where behavior is not allowed. (c) The performance (mean ± 1 
SE) of a hypothetical ectotherm in a thermal environment with a mean temperature 
below (left panel, 25°C and standard deviation σ = 2) and above (right panel, 33°C and 
standard deviation, σ = 2) its Topt of 29°C; colors correspond to the cost scenarios in 
(a); light shading indicates the extent to which behavior can increase performance. 
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To estimate the energetic costs for A. atra within a territory, we gener‐
ated one thermal landscape per lizard territory at each 15 min interval 
by arranging operative temperature measurements into a 5 by 6 array. 
To predict operative temperatures in the spaces between loggers, we lin‐
early interpolated the thermal configuration of each territory as a 40 by 
40 square array to assemble a total of 2,729 individual landscapes for 
this temporal window. We utilized previously described methods (see 
model analysis) to numerically estimate the cost function associated 
with each landscape as the mean distance needed to reach any possible 
temperature and predicted performance both with and without behav‐
ior at each time point. 

To predict the performance of A. atra in response to climate warm‐
ing, we increased 𝕋– to +5°C above the measured 𝕋–, and evaluated per‐
formance with and without behavior for each temperature regime. As 
such, this scenario assumes that climate warming will occur uniformly 
and will not affect the existing relationship between environmental tem‐
perature and the cost of thermoregulation. We examined the impact of 
the cost–mean temperature relationship on performance by fitting a lin‐
ear model between these variables (Figure 3b). We then adjusted this 
slope to more negative (e.g., a steeper negative relationship between 
mean temperature and movement cost) and less negative (e.g., values 
approaching zero and positive numbers) values, while preserving the 
predicted cost associated with the grand mean of these data.  

 

3.3  Geographic variation in the importance of behavior 

Using the dataset compiled by Deutsch et al. (2008), we quantified the 
importance of behavior in historical and future climate regimes for 38 
species of insects. We utilize the same methods presented by Vasseur 
et al. (2014) to determine the average long‐term performance for a de‐
cade of historic thermal conditions (those most appropriate for the time 
and location at which the species were collected) and future 2050 sce‐
nario (modeled using CGCM3.1/T47), modified to include the behavioral 
filter described in this paper. We modeled the cost function by setting 
β = c0ec1(T−20), where c0 sets the basal cost and c1 determines the cost by 
temperature scaling. We evaluated the dataset using c0 = {0.15, 0.5, 2.0} 
and c1 on the interval (−0.25, 0.25). The output shown in Figure 4a,b as‐
sumes a low basal cost (c0 = 0.15) and a moderate negative relationship 
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between cost and temperature (c1 = −0.1). Other values of these param‐
eters give qualitatively similar patterns but alter the extent to which be‐
havior impacts performance (see Figure S9). 

Figure 3 The cost of thermoregulatory behavior influences the predicted performance 
of southern rock agamas. (a) Spatial standard deviation in environmental tempera‐
ture increases with mean temperature,  𝕋–, within individual lizard territories; (b) the 
cost of thermoregulatory behavior (C in Equation 2) decreases as mean temperatures 
increase. The dashed black line indicates no relationship between 𝕋– and cost. (c) In‐
creasing the existing cost– mean temperature slope (plus sign in panel b) decreases 
predicted Agama atra performance, especially in warmer environments. Dashed lines 
represent performance estimates without behavior in current (blue) and warmed (red) 
environments; solid lines represent performance estimates with behavior with dif‐
ferent cost–mean temperature slope relationships. The triangle and circle indicate 
performance estimates with and without behavior given the existing 𝕋– /cost scaling 
(normalized to −1), respectively. 0 indicates no relationship between cost and mean 
temperature (dashed line in b), and positive values indicate a positive relationship be‐
tween cost and mean temperature; 𝕋– are equivalent in all instances.  
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Figure 4 Constraints and opportunities for behavioral rescue vary with latitude. Es‐
timated historic (a) and future (b) performance of 38 insect species assuming no be‐
havior (closed circles) and behavior (open triangles) across latitudes (dash lines de‐
pict subtropical latitudes between ~23 and 40°). The inset (box plot) describes the 
mean performance of all species with (solid) and without (dashed boxes) thermoreg‐
ulatory behavior. (c–e) Performance as a function of the relationship between the cost 
of thermoregulation and mean temperature,  𝕋– , in temperate (c), subtropical (d), and 
tropical (e) regions. Dashed lines represent performance estimates without behavior 
in historic (dashed blue) and 2050 (dashed red) environments; solid lines represent 
performance estimates allowing behavior in historic (solid blue) and 2050 (solid red) 
environments. Negative x‐axis values indicate a negative relationship between mean 
temperature and the cost of thermoregulation; vertical lines are the cost‐structure val‐
ues used in panels a and b. See Figure S9 for a detailed list of performance versus cost 
scaling relationships for all species.
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4  Results

4.1  Evaluating opportunities for behavioral rescue 

Our model predicts that behavior exerts the greatest effect on field per‐
formance when average movement costs are low (e.g., when available 
thermal heterogeneity is high and spatial autocorrelation is low; Fig‐
ures S1 and S2) or when the cost of thermoregulatory behaviors de‐
crease with increasing spatial mean temperature (Figure 2 blue), which 
is consistent with previous findings (Huey, 1974; Sears et al., 2011). In 
these instances, the accelerating rate at which the benefits of thermo‐
regulation accrue (dB2/dT 2

b) relative to the rate at which costs increase 
(dC 2/dT 2

b) are conducive to thermoregulatory behavior (Figure 2a) and 
this behavior ultimately elevates performance (Figure 2b,c). Driven by 
the shape of the thermal performance curve, the benefits of thermoreg‐
ulation accrue most rapidly when individuals inhabit an environment 
with a  𝕋–  above which maximal performance is achieved, Topt (Figure 
2b, Figure 2c left vs. right panel), also noted by Martin and Huey (2008). 
Conversely, in environments with temperatures lower than the Topt, our 
model predicts lesser change in performance from incorporating be‐
havior because benefits of behavior accrue slowly (Figure 2b,c), sup‐
porting the general observation that thermoregulatory behavior is used 
by many ectotherms to decrease body temperature (Grant & Dunham, 
1988; Kearney et al., 2009; Logan et al., 2015; Sunday et al., 2016). Yet, 
we do not negate the importance of behavioral thermoregulation strat‐
egies that increase body temperature above  𝕋–  (e.g., basking; Huey et 
al., 2003). Thus, behavioral thermoregulation becomes critically impor‐
tant as climate warming pushes environmental temperatures above Topt 

and effective behavioral buffering in these potentially novel conditions 
requires the availability of thermally suitable microsites.   

4.2  The potential for behavioral rescue in an African lizard 

We apply our framework using data collected in the laboratory and field 
for an African lizard, the southern rock agama (A. atra). We collected 
high‐resolution spatiotemporal operative temperature data at the scale 
of individual lizard territories (Figures S11 and S12) and characterized 
the thermal performance curves for lizards within this population (see 
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Materials and Methods) to investigate (a) the extent to which behavioral 
buffering can ameliorate the detrimental impacts of warming, and (b) 
the relationship between increasing mean temperature and the likeli‐
hood of behavioral rescue (e.g., Figures 2a and 4c–e). We observed a pos‐
itive linear relationship between mean temperature and the spatial stan‐
dard deviation of operative temperatures within territories (Figure 3a). 
The slope of this relationship remained positive for all active hours (Fig‐
ure S13), and after restricting the maximum temperature microhabitat 
the lizards could inhabit (Figure S14). Consistent with our hypothesis, 
the cost of thermoregulation as measured by c (Equation 2) decreased 
as  𝕋–  increased (Figure 3b, Figure S15). 

Forecasts of A. atra performance that include movement behavior 
differ substantially from those that do not include behavior (Figure 3c). 
Given the observed negative relationship between the cost of thermo‐
regulation and warming in A. atra territories, our framework predicts 
that warming will provide a slight increase in agama performance when 
movement behavior is allowed (Figure 3c, triangle) relative to estimates 
of current performance that exclude behavior. By contrast, we anticipate 
a ~90% decrease in performance when behavior is not allowed (Figure 
3c, circle). To determine the importance of the link between warming 
and thermoregulatory costs, we varied the strength and sign of this re‐
lationship in a simulated landscape. In thermal environments with iden‐
tical  𝕋– , but with different relationships between thermoregulatory cost 
and mean temperature, the potential for behavioral buffering can be 
substantially reduced and performance markedly declines with warm‐
ing (Figure 3c, red solid line). Thus, the behavioral buffering predicted 
for these lizards occurs because the hottest time periods coincide with 
the greatest spatial variation in environmental temperature, thereby re‐
ducing the cost of thermoregulatory behavior at the point when behav‐
ior is most critical in maintaining physiologically optimal body tempera‐
tures. A. atra are, therefore, predicted to be able to maintain sufficiently 
low body temperatures during hot periods and their body temperatures 
rarely exceed their critical thermal maximum. 

4.3  Geographic variation in the importance of behavior under 
climate change 

We applied our framework to population growth rate estimates of 38 in‐
sect species from around the globe (Deutsch et al., 2008), assuming the 
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same cost structure applies to all species. We evaluated the potential for 
behavior to alter vulnerability to climate change by explicitly consider‐
ing how the net benefits of thermoregulatory behavior change across 
latitude. By estimating the performance of each population in historic 
and future climates, while either allowing or not allowing behavior (see 
Materials and Methods), we determine the conditions that favor a large 
impact of behavior on performance. 

In the absence of thermoregulatory behavior, future insect perfor‐
mance decreased by 14% on average relative to historic performance 
based on projected local environmental temperatures for 2050 (see Ma‐
terials and Methods). Irrespective of the assumptions made about the 
cost of thermoregulation, movement behavior was estimated to have a 
negligible impact on historical estimates of performance (Figure 4a). By 
contrast, thermoregulatory behavior has an increased and potentially 
critical role in future environments because  𝕋–  increasingly rises above 
Topt for extended periods of time (Figure 4b). 

The inclusion of thermoregulatory behavior in models that predict 
the effects of thermal regimes on performance can lead to predictions 
of increased performance, but the extent of this improvement is largely 
contingent upon the costs of behavior and how such costs change with 
mean temperature (Figure 2c; Figure S8). The true structure of the cost 
function remains largely unresolved. Such “behavioral buffering” can al‐
leviate much of the detrimental impacts of warming if the cost of ther‐
moregulatory behavior lessens as mean temperature increases. For ex‐
ample, of the 19 insect species we estimate to be negatively impacted 
by climate warming, our model predicts that behavior will help alleviate 
this impact for 17 species, including six instances of “behavioral rescue” 
whereby behavior saves a population that would otherwise be rendered 
inviable (estimated performance <0) by climate change. Furthermore, 
for 10 species, the inclusion of behavior causes the effects of warming 
to vary from negative to positive (Figure 4; Figure S9). Nevertheless, if 
the cost of thermoregulatory behavior increases with mean tempera‐
ture, behavioral thermoregulation will have little capacity to buffer cli‐
mate warming (Figure 2b,c, green). 

Our model predicts that behavior will have the greatest capacity to 
ameliorate the detrimental impacts of warming in subtropical latitudes 
(±23.4–40° latitude, Figure 4; Table S1), paralleling our findings for the 
subtropical A. atra (Figure 3). Here, effective behavioral buffering is pre‐
dicted in 65% of subtropical insect species, compared to only 11% and 
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17% of species in temperate (>±40° latitude) and tropical (<±23.4° lat‐
itude) regions, respectively. Of subtropical species, thermoregulatory 
behavior has the potential to rescue six species (26% of all subtropi‐
cal species in the dataset) from local extirpation (Figure 4b). By con‐
trast, behavioral rescue is less likely in temperate and tropical regions 
where predicted warming produces fewer detrimental impacts (only 
22% and 33% of temperate and tropical species are forecasted to have 
reduced performance relative to historical levels, respectively; Figure 
4a–d). The effect of behavior was especially low in temperate regions, 
where greater thermal performance breadths result in weaker benefits 
of thermoregulation (Figure 4c). Thus, the impact of spatial heteroge‐
neity in the thermal environment is not equally important for all spe‐
cies and geographic regions. 

5  Discussion 

Our framework indicates substantial potential for behavior to mitigate 
the predicted negative effects of climate warming on animal popula‐
tions. Yet, predicting which species will benefit the most from thermo‐
regulatory behavior depends on the relationship between the features 
of the thermal environment, such as the association between thermal 
variability and mean temperature across ecosystems, and the ability of 
an organism to utilize the available thermal variability. It seems likely 
that a positive correlation between the mean environmental tempera‐
ture and spatial heterogeneity in temperature is common in nature at 
spatial scales relevant for organisms. Indeed, this relationship has been 
demonstrated for other taxa and habitats. For example, spatial hetero‐
geneity in an agricultural system increases with mean environmental 
temperature (Faye, Rebaudo, Carpio, Herrera, & Dangles, 2017), which 
reduces the distance required for crop pests to reach a variety of ther‐
mal microhabitats (Faye et al., 2017). Similarly, habitats containing ther‐
mal refugia—often defined as locations with lower amplitude tempera‐
ture fluctuations through time (Logan et al., 2013; Scheffers, Edwards, et 
al., 2014; Scheffers, Evans, et al., 2014)— will become increasingly spa‐
tially heterogeneous as  𝕋–  increases because the difference between re‐
fugia and the rest of the habitat will correspondingly diverge. Likewise, 
extreme cold events were accompanied by decreased thermal spatial 



Fe y  &  Va s s e u r ,  e t  a l .  i n  G lo b a l  C h a n g e  B i o lo gy  2 5  ( 2 0 1 9 )           19

variability for fish in the Everglades National Park, limiting the move‐
ment behavior of Common Snook (Boucek, Heithaus, Santos, Stevens, & 
Rehage, 2017). 

However, it is not merely enough to observe an increase in spatial 
heterogeneity as environments warm to assume that the costs of behav‐
ioral thermoregulation will decrease. This requires understanding of not 
only how the thermal landscape changes, but also how organisms will 
utilize the altered landscape, particularly in locations representing en‐
vironmental extremes (Figure S7). Fully resolving the relationship be‐
tween  𝕋–  and thermal characteristics, understanding how climate warm‐
ing may alter such relationships (Caillon et al., 2014), and anticipating 
how organisms will utilize the new thermal landscape should be a pri‐
ority for future research. 

Our analysis of insect species assumes that benefit functions are rep‐
resentative of the gains in performance made by all individuals of a given 
insect taxon and that the cost function is a reasonable fit to all individu‐
als regardless of the location or taxon. Most of the thermal performance 
curves on which our predictions rely are measured in the laboratory by 
averaging or aggregating across multiple individuals, yet the cost and 
benefit functions that we derive are based on the energetic gains and 
losses of individuals. Much has yet to be learned about the importance 
of intraspecific variation in thermal performance (Moran, Hartig, & Bell, 
2016) and this will surely lead to novel insights on the role of behavior. 
Furthermore, variation in costs among species, across ecological con‐
texts (Luhring & DeLong, 2016), and across space and time will undoubt‐
edly affect the potential for behavioral rescue and is an avenue worthy 
of future research. 

While intended to represent a first approximation of the costs of ther‐
moregulatory behavior imposed by the environment, the patterns pre‐
dicted by our framework are consistent with the movement behavior of 
organisms in nature. Sears et al. (2016) experimentally manipulated spa‐
tial heterogeneity in an open desert habitat and demonstrated that liz‐
ards maintain tighter control over their body temperatures and incurred 
smaller energetic costs in habitats with a greater range, and lower spa‐
tial autocorrelation, of environmental temperatures. Furthermore, liz‐
ard body temperatures mimicked operative temperatures until reaching 
a high threshold temperature (~33°C), at which point thermoregulatory 
behavior was used to maintain a near constant body temperature even 
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as the mean environmental temperature continued to increase. Simi‐
larly, Logan et al. (2015) recorded a positive relationship between ther‐
mal spatial heterogeneity (standard deviation of temperatures) and ac‐
tivity time of a tropical forest‐dwelling lizard species (Anolis lemurinus) 
and that activity time was much more strongly affected by environmen‐
tal temperatures above Topt rather than below it. These results suggest 
that increased thermal heterogeneity can encourage movement behav‐
ior by lowering thermoregulatory costs, even in habitats typically con‐
sidered to be thermally homogenous. 

Although behavior provides a potent defense against rapid envi‐
ronmental change, it has been historically excluded from large‐scale 
climate‐impact estimates (Woods et al., 2015). Our results provide a 
straightforward and general approach for integrating behavior into 
such estimates. Our framework reveals that the relationship between 
the thermal features of the environment defines the likelihood for be‐
havioral rescue in a given region. Organisms living in environments 
where the cost of thermoregulation increases with mean temperature 
may be particularly vulnerable to the effects of warming. Thus, a con‐
servation priority should be to identify and preserve features of hab‐
itats that function to increase thermal heterogeneity as environmen‐
tal temperatures continue to rise. 
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SI Appendix 1: Defining the cost structure of thermoregulatory behavior 

 

In this appendix we explore how the shape of the thermoregulatory behavior cost 

function changes in response to properties of the thermal environment, 𝕋, and the 

individual that is behaviorally thermoregulating. The purpose of this appendix is to 

establish a reasonable approximation for the shape of the cost function and to understand 

how specific aspects of 𝕋 and the behaviorally thermoregulating organism impact the 

overall shape and steepness of the cost function.  

 

In the examples below, we elaborate on the specific details involved with each scenario. 

In each case, the cost of achieving a body temperature is determined by the energetic 

costs associated with maintaining a particular body temperature, given 𝕋. Similar to 

previous studies [1,2], we define the cost of maintaining a particular body temperature as 

being linearly proportional to the distance needed to travel to achieve this temperature. 

This accounts for the energetic costs associated with moving, potential threats faced from 

predation, and lost foraging opportunities incurred while traveling.  

 

Unless otherwise specified, the 𝕋 is defined as a thermal environment with mean  = 

25ºC, standard deviation  = 3, and moderate spatial autocorrelation ( = -3). The thermal 

landscape is defined by a 256 x 256 two-dimensional grid folded as a torus. Unless 

otherwise specified, the costs associated with achieving a particular body temperature are 

defined by the mean distance an organism must travel to maintain a particular body 

temperature. This value is calculated from simulating movement dynamics with 1000 

simulations of a particular 𝕋 and a random starting location. This process simulates the 

following ecological conditions: 1) the spatial configuration of temperatures will change 

through time and organisms have to constantly seek out a preferred temperature as this 

change occurs, 2) organisms will have to leave locations of preferred temperatures for 

resource access before navigating back to their preferred locations.  

 

Unless otherwise specified, the individual uses a simple model of adaptive movement 

where it senses the local environment (current environment plus the eight surrounding 

locations), assesses the vertical and horizontal gradient in temperatures independently, 

and moves in the correct direction (e.g., the direction that reduces the difference between 

their current and desired body temperature) with 90% certainty. After a threshold number 

of time steps have elapsed (t = 6,500, which represents ~10% of the pixels on the 

landscape), the organism will stop searching for a particular temperature if it has not 

already found a cell that is within +/- 1 degree of its preferred temperature.  

 

Below we use the aforementioned approach to understand the importance of specific 

properties of the environment and organism for the costs of behavioral thermoregulation. 

 

  



1) The effect of spatial autocorrelation  

 

To investigate the role of spatial autocorrelation for the cost of thermoregulation, we 

simulated three classes of 𝕋: spatially uncorrelated ( = 0, Fig. S1 top left), moderate 

spatial autocorrelation ( = -3, top center), and high spatial autocorrelation ( = -6, top 

right). The landscapes are otherwise identical in their mean and standard deviation in 

temperature. In all instances, a positive second derivative function with a minimum 

temperature of 25ºC defines the cost structure measured by our simulated movement of 

individuals (Figure S1 bottom row, black lines); however, the steepness of the cost 

function away from this minimum and the value of the cost function minima increased 

with spatial autocorrelation. As such, at the scale of the entire landscape, uncorrelated 

environments lower the cost of thermoregulatory behavior. 

 

 

 

 
Figure S1: Effects of spatial autocorrelation on the costs of behavioral thermoregulation.  

Top row: examples of spatially uncorrelated ( = 0, left), moderate spatial autocorrelation 

( = -3, center), and high spatial autocorrelation landscapes ( = -6, right). Bottom row: 

the costs of achieving body temperature (black dots) calculated as the mean of 1000 

simulations measuring the distance traveled from random starting locations to achieve 

each temperature. The blue shading is a frequency distribution of the available 

environmental temperatures from which each landscape is formed. 

 

  



2) The effect of thermal heterogeneity 

 

To investigate the role of thermal heterogeneity in environmental temperature for the cost 

of thermoregulation, we simulated three classes of thermal landscapes: low variation in 

environmental temperature ( = 1.5, Fig. S2 top left), moderate variation in 

environmental temperature ( = 3, top center), and high variation in environmental 

temperature ( = 4.5, top right). In all instances, the positive second derivative function 

with a minimum temperature of 25ºC defined the cost structure. However, the steepness 

of the cost function decreased as thermal heterogeneity increased (Figure S2). The cost of 

thermoregulatory behavior is lower in thermally heterogeneous environments 

 

 
Figure S2: Effects of thermal heterogeneity on the cost of behavioral thermoregulation.  

Top row: examples of low ( = 1.5, left), moderate ( = 3, center), and high ( = 4.5, 

right) heterogeneity in the thermal landscape. Bottom row: the costs of achieving body 

temperature (black dots) calculated as the mean of 1000 simulations measuring the 

distance traveled from a random starting location to each temperature. The blue shading 

bounded by black solid line is a frequency distribution of the available environmental 

temperatures from which each individual landscape is formed.  

 

  



3) The effects of behavioral thermoregulation movement strategy  

 

To investigate the role of thermoregulatory strategy in the cost of thermoregulation, we 

simulated three movement strategies in identical thermal landscapes: omniscient 

searching (Fig. S3 left) defined as an individual traveling the shortest Manhattan distance 

from the starting location to its desired temperature, locally-informed searching (center), 

defined by the individual making a probabilistic move towards their desired temperature 

based on the immediately adjacent environmental temperatures, and random searching 

(right) defined by the organism moving from a starting location in a random direction. In 

all instances, the positive second derivative function with the minima 25ºC defined the 

cost structure; however, steepness of the cost function greatly increases as the organism 

exhibits reduced searching efficiency (Figure S3 bottom row, black lines). Thus, the costs 

of thermoregulatory behavior will be reduced for more efficient searchers. 

 

 

 

 
Figure S3: Effects of movement strategy on the costs of behavioral thermoregulation.  

Top row: the thermal landscapes that omniscient (left), locally-informed (center), and 

random (right) searching individuals inhabit are identical. Bottom row: the costs of 

achieving body temperature (black dots) calculated as the mean of 1000 simulations 

measuring the distance traveled from random starting locations to each temperature, 

based on the aforementioned search algorithms. Note different scaling of y-axis for the 

bottom left panel. The blue shading is a frequency distribution of the available 

environmental temperatures from which each individual landscape is formed, which are 

identical among landscapes.  

 

 

  



4) The effect of individual starting location 

 

In the above scenarios, the mean search distance traveled is calculated as the mean 

distance traveled from a set of random starting locations to a desired temperature. 

However, it is possible that an individual will inhabit an environment where it is 

consistently moving from a particular temperature (e.g., an underground burrow, or a 

thermal environment rich in a key resource) to achieve a particular body temperature. In 

such instances, we can define the cost of thermoregulatory behavior as the distance 

traveled from starting locations having particular temperatures (e.g., cooler microsites) to 

locations with a different, preferred temperature (e.g., warmer microsites). In order to 

investigate the role of starting location for the cost of thermoregulatory behavior, we 

simulated three movement strategies in identical thermal landscapes: starting from a 

comparatively cool location of 22ºC (Fig. S4, left), starting from a random location 

(center), and starting from a comparatively warm location (28ºC, right). When the 

starting location is not the most abundant temperature in the environment (Fig. S4 right 

and left), the cost function becomes asymmetric and is skewed in the direction of where a 

greater abundance of such thermal habitats exist.  

 

 
Figure S4: Effects of starting location on the costs of thermoregulatory behavior.  

Top row: individuals starting from comparatively cool temperature (left), random 

(center), or comparatively warm (right) starting locations thermoregulate in identical 

habitats. Bottom row: the costs of achieving body temperature (black dots) calculated as 

the mean of 1000 simulations measuring the distance traveled. The blue shading is a 

frequency distribution of the available environmental temperatures from which each 

individual landscape is formed, which is identical among landscapes.  

 

 

  



5) The effect of bimodal thermal environments 

 

In the aforementioned scenarios, we consider the cost of thermoregulation in 

environments with unimodal temperature distributions. Here, we consider the costs of 

thermoregulation in bimodal thermal environments (Figure S5, top center and top right 

panels).  Both environments are mixtures of  = 30ºC,  = 2 and  = 20ºC,  = 2 

distributions; Figure S5 center panel draws 75% from the distribution with the high mean 

whereas the Figure S5 right panel draws 75% from the distribution with the lower mean 

(Figure S5, bottom row blue shading).  While the cost function of the unimodal thermal 

environment (Figure S5 left) exhibits a single minimum value occurring at the mean of 

the distribution, the cost functions for the bimodal environments exhibit two minima, 

each located at the two means from the bimodal distribution. While the mean 

environmental temperature coincides with the minimum of the cost function in a 

normally distributed environment, the mean environmental temperature in bi- and multi- 

modal thermal environments can coincide with regions on the cost function that are not 

the minima of the cost function. As such, non-normally distributed thermal environments 

strongly favor a divergence between mean ambient temperature and body temperature, as 

the cost of thermoregulatory behavior is reduced when body temperatures deviate from 

the mean in these environments. 

 
Figure S5: Effects of bimodal temperature distributions on the costs of thermoregulation. 

Top row: a normally distributed thermal environment (left), a bimodal thermal 

environment emphasizing high temperatures (middle), and a bimodal thermal 

environment emphasizing low temperatures (right). Bottom row: the costs of achieving 

body temperature (black dots) calculated as the mean of 1000 simulations measuring the 

distance traveled from random starting locations to each temperature. The blue shading is 

a frequency distribution of the available environmental temperatures from which each 

individual landscape is formed.  

 

 

 

 

  



6) The effect of uniform versus normal temperature distributions 

 

Above, we examined the cost of thermoregulation in environments drawn from normally 

distributed temperature distributions. Here, we consider the costs of thermoregulation in 

an environment with a uniform distribution of temperatures (Figure S6, top left). The cost 

function of thermoregulation in the uniformly distributed thermal environment (Figure 

S6, lower left) exhibits a single minimum value occurring at the mean of the distribution, 

similar to the cost function associated with the normally distributed environment. 

However, the steepness of the cost function is reduced when temperatures are uniformly 

distributed. As such, the rarity of particular thermal environments (e.g., the low and high 

temperature environments when temperatures are normally distributed) is not a necessary 

condition for producing the concave shape of the cost function.  

 

 

 
Figure S6: Effects of uniform versus normal temperature distribution on the cost of 

thermoregulatory behavior. Top row: examples of a uniform (left) and a normal 

temperature distribution (right) with similar levels of autocorrelation. Bottom row: the 

costs of achieving body temperature (black dots) calculated as the mean of 1000 

simulations measuring the distance traveled from random starting locations to each 

temperature for uniform (bottom left) and normally distributed environments (bottom 

right). The blue shading is a frequency distribution of the available environmental 

temperatures from which each individual landscape is formed.  

 

  



7) The effect of not being able to move across all existing environmental conditions 

 

Previously (Fig. S1-S6), we assume that the individual is capable of moving across all 

regions of the thermal habitat in order to arrive at a specific area, including the ability to 

cross particularly hot regions of the landscape. However, specific locations of the 

environment may be functionally unavailable to an organism if these areas exceed a 

particular temperature. As such, below we consider the costs of thermoregulation in three 

identical environments (Figure S7 left, center, right), where the individual cannot to 

move across locations above 30OC (left), locations at or above 25OC (center), or locations 

above 23OC (right). In these instances, a new pattern emerges depending on how extreme 

the environmental conditions are for the individual. If we assume in this example that an 

organism cannot access environments (even temporarily) above its CTmax, the left panel 

represents conditions where the modal environmental temperature is lower than CTmax. In 

this instance, irrespective of searching for temperatures above or below the modal 

temperature, the cost function (red dots) is almost identical to the cost function where an 

individual can access all temperatures (black dots). However, in the instance where the 

modal temperature approximates (center panel) or exceeds (right panel) the modal 

temperature, the mean cost of locating temperatures increases and the cost function 

becomes asymmetric relative to scenarios where the individual can move across all 

temperatures.  

 
Figure S7: Effects of an individual being restricted from moving into hot regions of the 

landscape on the cost of thermoregulatory behavior. Top row: three identical landscapes 

that are inhabited by a hypothetical organism that cannot move into regions (for any 

amount of time) that exceed 30OC (left), 25OC (center), or 23OC (left).  Bottom row: the 

movement costs of achieving body temperatures (red dots) calculated as the mean of 

1000 simulations measuring the distance traveled from random starting locations to each 

temperature, based on being restricted from moving into regions exceeding particular 

temperatures (defined in the top row). Black dots represent the search distances for an 

organism that can access all environmental temperatures. The blue shading is a frequency 

distribution of the available environmental temperatures from which each individual 

landscape is formed.  

  



 

 
Figure S8: The extent to which behavior modifies population fitness depends on the cost 

of behavioral thermoregulation. A) Predicted body temperatures and B) and 

corresponding performance for a hypothetical organism based on environments with 

different mean costs of thermoregulation (dotted lines are high cost environments, top 

row; dashed lines are medium cost environments, middle row; solid lines are low cost 

environments, bottom row). Line color indicates whether the cost of thermoregulation 

increases (green), is invariant (yellow), or decreases (blue) with increasing mean 

temperature (see top panel). C) Mean performance of 38 insect species given the cost 

based on historic and (D) 2050 climate scenarios (see methods), where dark shading 

represents the performance estimate without behavior and light shading indicates the 

extent to which behavior can increase performance.  

 

  



Table S1: The percentage of temperate, subtropical, and tropical species from Fig. 3 (the 

instance of low average costs and costs decreasing as 𝕋̅ increases) exhibiting particular 

behavioral features. Wf = future performance with no behavior, Wh= historic performance 

with no behavior, Wfb= future performance with behavior, Whb= historic performance 

with behavior. 

 

Process Definition % Temperate 

(n = 9) 

% Subtropical 

(n = 23) 

% Tropical 

(n = 6) 

Behavior enhances 

performance in future climates 

Wfb > Wf 22% 100% 67% 

Negative impact of warming 

without behavior 

Wh  > Wf 22% 65% 33% 

Behavioral buffering is 

predicted to occur 

When Wh  > Wf , 

Wfb > Wf 

11% 65% 17% 

Behavioral rescue is predicted 

to occur 

When Wh  > Wf, 

Wfb > 0 > Wf  

0% 26% 0% 

 

  



 

Figure S9: Detailed predictions of insect performance in response to climate warming. 

Each panel represents a species of insect of which three examples are presented in the 

main text (Fig. 4). Dashed lines represent performance estimates without behavior in 

historic (dashed blue) and 2050 (dashed red) environments; solid lines represent 

performance estimates allowing behavior in historic (solid blue) and 2050 (solid red) 

environments. Negative x-axis values indicate a negative relationship between mean 

temperature and the cost of thermoregulation (e.g., the costs of behavioral 

thermoregulation decrease as mean environmental temperature increases). 

  



 

 
Figure S10: Estimated thermal performance of 37 male Agama atra based on three 

replicate measurements of sprint speed at seven temperatures. Colors indicate different 

individuals. Population level performance, w, is calculated by fitting a non-linear mixed 

effects model to the form: 𝑤(𝑇) = 𝑎 { 𝑒−(𝑇−𝑏)/(2 𝑐)2

1 − [(𝑇 − 𝑏) (𝑏 − 𝑑)⁄ ]2
𝑇≤𝑏 
𝑇>𝑏

,  

where individual A. atra is a random factor with respect to b and d, which correspond to 

CTmax and Topt, respectively. This statistical relationship was fit using R version 3.4.1 

using the nlme package. 

 

Table S2: Parameter estimates and standard errors associated with the above model. 

 

Parameter   Value     Standard Error    

a        1.061     0.019   

b       40.749    0.347   

c     -13.119    0.548   

d     44.273    0.081   

  



 

Figure S11: Mean spatial temperature (white bars; the average mean temperature each 

time operative temperatures are recorded), mean range of spatial temperatures (light grey 

bars; the range of operative temperatures recorded at each time interval), and mean 

spatial standard deviation (black bars; the mean standard deviation in operative 

temperatures) for three different A. atra territories (A,B,C). Territory A is analyzed in 

Fig. 4, Territory B and C are located nearby; the amount of variation that exists at the 

regional rather than microhabitat scale is additionally reported. Error bars show +/- 1 SD. 

 

 

 

 

 
Figure S12: Photos of Agama atra territories. Photo credit Adriaan Hougaard. 

  



 

 
Figure S13: The spatial standard deviation of Agama atra operative temperatures 

increases as mean temperature increases. Each panel represents the thermal conditions 

during a particular hour, ranging from 0800 to 1900. Linear slope estimates and the 

standard error of the slope estimates are listed in each panel. 

 

  



 
Figure S14: The relationship between spatial standard deviation in Agama atra 

territories, depending on the range of temperatures included. From left to right: all 

temperatures are considered when calculating spatial SD; only temperatures less than 

54.2OC are considered (i.e., temps < 10OC above the measured CTmax) when calculating 

spatial SD; only temperatures less than 49.2OC are considered (i.e., < 5OC above the 

measured CTmax) when calculating spatial SD; only temperatures less than 44.2OC are 

considered (i.e. temps < CTmax) when calculating spatial SD. 

 

 
Figure S15: The cost parameters of thermoregulation in Agama atra microhabitats 

decreases as mean temperature increases. Each panel represents the thermal conditions 

during a particular hour, ranging from 0800 to 1900. Linear slope estimates and the stand 

error of the slope estimates are listed on each panel. Cost parameter values correspond to 

C in eq. 2, where lower C values correspond to environments with a low cost of 

thermoregulation.  

 



Appendix 2: Supplemental methods for characterizing Agama atra territories and 

thermal sensitivity   

 

We characterized the thermal heterogeneity of three individual Agama atra territories at 

Jonaskop (~34° S, 1500m asl), Western Cape Province, South Africa using physical 

models (“operative temperature models”, or OTMs). Models were distributed semi-

randomly within each territory. OTMs were built using thin-walled, hollow copper 

cylinders (80 × 25 × 15 mm) and painted to approximate the skin reflectance of a typical 

adult A. atra [3,4]. Within each OTM, we embedded a temperature-logger (Thermochron 

iButton, DS1921G-F5, Sunnyvale, CA) by wrapping it in non-conductive acrylic mesh to 

prevent direct contact with the inside surface of the copper tube.  

 

Thirty operative temperature models were placed within the boundaries of a lizard's 

territory (Fig. S12) along transects radiating at 45º angles from the central basking spot 

(established via behavioral observations of males). To choose the location for each 

model, we randomized each of the following factors: (i) cardinal direction from the center 

of the territory; (ii) distance from the center of the territory (in 0.5 m intervals up to 10 

m); (iii) type of substrate (rock or soil); (iv) sun exposure (sun, half-sun, shade); (v) wind 

exposure (exposed or sheltered); (vi) body orientation relative to sun (N, W, S or E); and 

(vii) slope (horizontal, 45° or vertical). Sun exposure status and orientation were assigned 

at midday. Locations that were either in a crevice, indentation in the rock, or covered by 

vegetation were classified as non-wind exposed, while all others were classified as wind-

exposed. Data were logged at 15-min intervals from 1 February to 1 March 2017. Fig. 

S11 shows the thermal characteristics of a typical territory (Fig. S11).   



 

Adult male A. atra lizards (n = 37 lizards) were collected at the same site, Jonaskop, 

during October of 2016. Lizards were collected using the standard ‘slip noose’ technique 

[5] and transported to a laboratory at Stellenbosch University. Before measuring thermal 

sensitivity of performance traits, lizards were acclimated to laboratory conditions for a 

minimum of 5 days.  

 

We measured the running speed of each male lizard at each of the following body 

temperatures: 15, 25, 30, 35, 38, 42 and 44°C (in random order for each individual). The 

choice of temperatures was based on measurements of body temperature variation of A. 

atra in the field and preliminary trials to establish their thermal window. Running speed 

is an ecologically relevant trait that has been linked to fitness in a number of species [6]. 

Lizards were heated and cooled to the target body temperature by putting them in a 

climate-controlled room set to that temperature for at least 1 hour prior to the start of the 

trial (the target temperature was verified prior to each trial using a thin thermocouple 

inserted in the cloaca and connected to a handheld temperature reader). Running speed 

was measured in an enclosed runway that was demarcated every 25 cm [7]. The runway 

was constructed out of hardboard 2.00 m in length, 0.15 m width, and 0.30 m height. 

Lizards ran on a layer of very fine sandpaper, which provided sufficient traction. We 

encouraged lizards to run by gently tapping their tails. Three trials were recorded at each 

temperature for each individual (with a minimum of 30 minutes rest between 

measurements at the same temperature). Trials were filmed with a high speed (60 fps) 

digital video camera and the maximum running speed over any 25 cm length of track was 



computed using frame-by-frame analysis in the motion analysis software programme 

Kinovea (www.kinovea.org). If the lizard could not run for at least 25 cm without 

stopping, we scored that speed as 0 m/s [6].  All lizards were given at least two hours rest 

between sprint speed trials at different temperatures and we never measured the same 

lizard at more than two temperatures per day.  

 

A. atra thermal performance (Fig. S10) was determined by fitting a non-linear mixed 

effects model with sprint speed as the response variable, averaged across three replicate 

measures, and individual lizard as a random factor with the form determined by Deutsch 

et al. [8] (Table S2). 
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