66 research outputs found

    CD8+ T Cells from SIV Elite Controller Macaques Recognize Mamu-B*08-Bound Epitopes and Select for Widespread Viral Variation

    Get PDF
    Background. It is generally accepted that CD8(+) T cell responses play an important role in control of immunodeficiency virus replication. the association of HLA-B27 and -B57 with control of viremia supports this conclusion. However, specific correlates of viral control in individuals expressing these alleles have been difficult to define. We recently reported that transient in vivo CD8(+) cell depletion in simian immunodeficiency virus (SIV)-infected elite controller (EC) macaques resulted in a brief period of viral recrudescence. SIV replication was rapidly controlled with the reappearance of CD8(+) cells, implicating that these cells actively suppress viral replication in ECs. Methods and Findings. Here we show that three ECs in that study made at least seven robust CD8(+) T cell responses directed against novel epitopes in Vif, Rev, and Nef restricted by the MHC class I molecule Mamu-B*08. Two of these Mamu-B*08-positive animals subsequently lost control of SIV replication. Their breakthrough virus harbored substitutions in multiple Mamu-B*08-restricted epitopes. Indeed, we found evidence for selection pressure mediated by Mamu-B*08-restricted CD8(+) T cells in all of the newly identified epitopes in a cohort of chronically infected macaques. Conclusions. Together, our data suggest that Mamu-B*08-restricted CD8(+) T cell responses effectively control replication of pathogenic SIV(mac)239. All seven regions encoding Mamu-B*08-restricted CD8(+) T cell epitopes also exhibit amino acid replacements typically seen only in the presence of Mamu-B*08, suggesting that the variation we observe is indeed selected by CD8(+) T cell responses. SIVmac239 infection of Indian rhesus macaques expressing Mamu-B*08 may therefore provide an animal model for understanding CD8(+) T cell-mediated control of HIV replication in humans.National Institutes of Health (NIH)National Center for Research Resources (NCRR)Japan Health Sciences FoundationKent State University Research CouncilOhio Board of Regents Research ChallengeResearch Facilities ImprovementUniv Wisconsin, WNPRC, Madison, WI 53706 USAUniversidade Federal de São Paulo, Div Infect Dis, São Paulo, BrazilUniv Wisconsin, Dept Pathol & Lab Med, Madison, WI USALa Jolla Inst Allergy & Immunol, Div Vaccine Discovery, La Jolla, CA USAUniv Oxford, John Radcliffe Hosp, Weatherall Inst Mol Med, Oxford OX3 9DU, EnglandKent State Univ, Dept Biol Sci, Kent, OH 44242 USAUniv S Carolina, Dept Biol Sci, Columbia, SC 29208 USAUniversidade Federal de São Paulo, Div Infect Dis, São Paulo, BrazilNational Institutes of Health (NIH): HHSN266200400088CNational Institutes of Health (NIH): R01 AI049120National Institutes of Health (NIH): R01 AI052056National Institutes of Health (NIH): R24 RR015371National Institutes of Health (NIH): R24 RR016038National Institutes of Health (NIH): R21 AI068586National Center for Research Resources (NCRR): P51 RR000167Japan Health Sciences Foundation: GM43940Research Facilities Improvement: RR15459-01Research Facilities Improvement: RR020141-01Web of Scienc

    Functional analysis of frequently expressed Chinese rhesus macaque MHC class I molecules Mamu-A1*02601 and Mamu-B*08301 reveals HLA-A2 and HLA-A3 supertypic specificities

    Get PDF
    The Simian immunodeficiency virus (SIV)-infected Indian rhesus macaque (Macaca mulatta) is the most established model of HIV infection and AIDS-related research, despite the potential that macaques of Chinese origin is a more relevant model. Ongoing efforts to further characterize the Chinese rhesus macaques’ major histocompatibility complex (MHC) for composition and function should facilitate greater utilization of the species. Previous studies have demonstrated that Chinese-origin M. mulatta (Mamu) class I alleles are more polymorphic than their Indian counterparts, perhaps inferring a model more representative of human MHC, human leukocyte antigen (HLA). Furthermore, the Chinese rhesus macaque class I allele Mamu-A1*02201, the most frequent allele thus far identified, has recently been characterized and shown to be an HLA-B7 supertype analog, the most frequent supertype in human populations. In this study, we have characterized two additional alleles expressed with high frequency in Chinese rhesus macaques, Mamu-A1*02601 and Mamu-B*08301. Upon the development of MHC–peptide-binding assays and definition of their associated motifs, we reveal that these Mamu alleles share peptide-binding characteristics with the HLA-A2 and HLA-A3 supertypes, respectively, the next most frequent human supertypes after HLA-B7. These data suggest that Chinese rhesus macaques may indeed be a more representative model of HLA gene diversity and function as compared to the species of Indian origin and therefore a better model for investigating human immune responses

    Low-dose rectal inoculation of rhesus macaques by SIVsmE660 or SIVmac251 recapitulates human mucosal infection by HIV-1

    Get PDF
    We recently developed a novel strategy to identify transmitted HIV-1 genomes in acutely infected humans using single-genome amplification and a model of random virus evolution. Here, we used this approach to determine the molecular features of simian immunodeficiency virus (SIV) transmission in 18 experimentally infected Indian rhesus macaques. Animals were inoculated intrarectally (i.r.) or intravenously (i.v.) with stocks of SIVmac251 or SIVsmE660 that exhibited sequence diversity typical of early-chronic HIV-1 infection. 987 full-length SIV env sequences (median of 48 per animal) were determined from plasma virion RNA 1–5 wk after infection. i.r. inoculation was followed by productive infection by one or a few viruses (median 1; range 1–5) that diversified randomly with near starlike phylogeny and a Poisson distribution of mutations. Consensus viral sequences from ramp-up and peak viremia were identical to viruses found in the inocula or differed from them by only one or a few nucleotides, providing direct evidence that early plasma viral sequences coalesce to transmitted/founder viruses. i.v. infection was >2,000-fold more efficient than i.r. infection, and viruses transmitted by either route represented the full genetic spectra of the inocula. These findings identify key similarities in mucosal transmission and early diversification between SIV and HIV-1, and thus validate the SIV–macaque mucosal infection model for HIV-1 vaccine and microbicide research

    The ATLAS inner detector trigger performance in pp collisions at 13 TeV during LHC Run 2

    Get PDF
    The design and performance of the inner detector trigger for the high level trigger of the ATLAS experiment at the Large Hadron Collider during the 2016-18 data taking period is discussed. In 2016, 2017, and 2018 the ATLAS detector recorded 35.6 fb−1^{-1}, 46.9 fb−1^{-1}, and 60.6 fb−1^{-1} respectively of proton-proton collision data at a centre-of-mass energy of 13 TeV. In order to deal with the very high interaction multiplicities per bunch crossing expected with the 13 TeV collisions the inner detector trigger was redesigned during the long shutdown of the Large Hadron Collider from 2013 until 2015. An overview of these developments is provided and the performance of the tracking in the trigger for the muon, electron, tau and bb-jet signatures is discussed. The high performance of the inner detector trigger with these extreme interaction multiplicities demonstrates how the inner detector tracking continues to lie at the heart of the trigger performance and is essential in enabling the ATLAS physics programme

    Basophils beyond allergic and parasitic diseases

    No full text
    : Basophils bind IgE via FcεRI-αβγ2, which they uniquely share only with mast cells. In doing so, they can rapidly release mediators that are hallmark of allergic disease. This fundamental similarity, along with some morphological features shared by the two cell types, has long brought into question the biological significance that basophils mediate beyond that of mast cells. Unlike mast cells, which mature and reside in tissues, basophils are released into circulation from the bone marrow (constituting 1% of leukocytes), only to infiltrate tissues under specific inflammatory conditions. Evidence is emerging that basophils mediate non-redundant roles in allergic disease and, unsuspectingly, are implicated in a variety of other pathologies [e.g., myocardial infarction, autoimmunity, chronic obstructive pulmonary disease, fibrosis, cancer, etc.]. Recent findings strengthen the notion that these cells mediate protection from parasitic infections, whereas related studies implicate basophils promoting wound healing. Central to these functions is the substantial evidence that human and mouse basophils are increasingly implicated as important sources of IL-4 and IL-13. Nonetheless, much remains unclear regarding the role of basophils in pathology vs. homeostasis. In this review, we discuss the dichotomous (protective and/or harmful) roles of basophils in a wide spectrum of non-allergic disorders

    Simian Immunodeficiency Virus-Specific CD8+ T Cells Recognize Vpr- and Rev-Derived Epitopes Early after Infection â–¿

    No full text
    The kinetics of CD8+ T cell epitope presentation contribute to the antiviral efficacy of these cells yet remain poorly defined. Here, we demonstrate presentation of virion-derived Vpr peptide epitopes early after viral penetration and prior to presentation of Vif-derived epitopes, which required de novo Vif synthesis. Two Rev epitopes exhibited differential presentation kinetics, with one Rev epitope presented within 1 h of infection. We also demonstrate that cytolytic activity mirrors the recognition kinetics of infected cells. These studies show for the first time that Vpr- and Rev-specific CD8+ T cells recognize and kill simian immunodeficiency virus (SIV)-infected CD4+ T cells early after SIV infection

    Two MHC class I molecules associated with elite control of immunodeficiency virus replication, Mamu-B08 and HLA-B2705, bind peptides with sequence similarity

    No full text
    HLA-B27- and -B57-positive HIV-infected humans have long been associated with control of HIV replication, implying that CD8(+) T cell responses contribute to control of viral replication. In a similar fashion, 50% of Mamu-B*08-positive Indian rhesus macaques control SIVmac239 replication and become elite controllers with chronic-phase viremia <1000 viral RNA copies/ml. Interestingly, Mamu-B*08-restricted SIV-derived epitopes appeared to match the peptide binding profile for HLA-B*2705 in humans. We therefore defined a detailed peptide-binding motif for Mamu-B*08 and investigated binding similarities between the macaque and human MHC class I molecules. Analysis of a panel of approximately 900 peptides revealed that despite substantial sequence differences between Mamu-B*08 and HLA-B*2705, the peptide-binding repertoires of these two MHC class I molecules share a remarkable degree of overlap. Detailed knowledge of the Mamu-B*08 peptide-binding motif enabled us to identify six additional novel Mamu-B*08-restricted SIV-specific CD8(+) T cell immune responses directed against epitopes in Gag, Vpr, and Env. All 13 Mamu-B*08-restricted epitopes contain an R at the position 2 primary anchor and 10 also possess either R or K at the N terminus. Such dibasic peptides are less prone to cellular degradation. This work highlights the relevance of the Mamu-B*08-positive SIV-infected Indian rhesus macaque as a model to examine elite control of immunodeficiency virus replication. The remarkable similarity of the peptide-binding motifs and repertoires for Mamu-B*08 and HLA-B*2705 suggests that the nature of the peptide bound by the MHC class I molecule may play an important role in control of immunodeficiency virus replication
    • …
    corecore