474 research outputs found

    Solar House Heating

    Get PDF

    Practice in Child Phonological Disorders: Tackling some Common Clinical Problems

    Get PDF
    Goal of presentation is to identify areas of child phonology that clinicans have difficulty with

    Inter-site Coulomb interaction and Heisenberg exchange

    Full text link
    Based on exact diagonalization results for small clusters we discuss the effect of inter-site Coulomb repulsion in Mott-Hubbard or charge transfer insulators. Whereas the exchange constant J for direct exchange is substantially enhanced by inter-site Coulomb interaction, that for superexchange is suppressed. The enhancement of J in the single-band models holds up to the critical value for the charge density wave (CDW) instability, thus opening the way for large values of J. Single-band Hubbard models with sufficiently strong inter-site repulsion to be near a CDW instability thus may provide `physical' realizations of t-J like models with the `unphysical' parameter ratio J/t=1.Comment: Revtex file, 4 PRB pages, with 5 embedded ps-files. To appear in PRB, rapid communications. Hardcopies of figures or the entire manuscript may also be obtained by e-mail request to: [email protected]

    Selective Infarct Zone Imaging With Intravenous Acoustically Activated Droplets

    Get PDF
    BACKGROUND: Microbubbles (MB) can be compressed to nanometer-sized droplets and reactivated with diagnostic ultrasound; these reactivated MB possess unique imaging characteristics. OBJECTIVE: We hypothesized that droplets formed from compressing Definity MB may be used for infarct-enhancement imaging. METHODS: Fourteen rats underwent ligation of their left anterior descending (LAD) artery, and five pigs underwent 90 minute balloon occlusions of their mid LAD. At 48 hours in rats, transthoracic ultrasound was performed at two and four minutes following 200 μL intravenous injections (IVI) of Definity droplets (DD), at which point the MI was increased from 0.5 to 1.5 to assess for a transient contrast enhancement zone (TEZ) within akinetic segments. In pigs, 1.0 mL injections of DD were administered and low frame rate (triggered end systolic or 10 Hz) imaging 2-4 minutes post iVI to selectively activate and image the infarct zone (IZ). Infarct size was defined by delayed enhancement magnetic resonance imaging (DE-MRI) and post-mortem staining (TTC). RESULTS: Increasing MI to 1.5 (at two or four minutes after IVI) resulted in a TEZ in rats, which correlated with infarct size (r = 0.94, p CONCLUSION: DD formulated from commercially available MB can be acoustically activated for selective infarct enhancement imaging

    Identification and tunable optical coherent control of transition-metal spins in silicon carbide

    Get PDF
    Color centers in wide-bandgap semiconductors are attractive systems for quantum technologies since they can combine long-coherent electronic spin and bright optical properties. Several suitable centers have been identified, most famously the nitrogen-vacancy defect in diamond. However, integration in communication technology is hindered by the fact that their optical transitions lie outside telecom wavelength bands. Several transition-metal impurities in silicon carbide do emit at and near telecom wavelengths, but knowledge about their spin and optical properties is incomplete. We present all-optical identification and coherent control of molybdenum-impurity spins in silicon carbide with transitions at near-infrared wavelengths. Our results identify spin S=1/2S=1/2 for both the electronic ground and excited state, with highly anisotropic spin properties that we apply for implementing optical control of ground-state spin coherence. Our results show optical lifetimes of \sim60 ns and inhomogeneous spin dephasing times of \sim0.3 μ\mus, establishing relevance for quantum spin-photon interfacing.Comment: Updated version with minor correction, full Supplementary Information include

    Electronic Structure of Superconducting Ba6c60

    Full text link
    We report the results of first-principles electronic-structure calculations for superconducting Ba6C60. Unlike the A3C60 superconductors, this new compound shows strong Ba-C hybridization in the valence and conduction regions, mixed covalent/ionic bonding character, partial charge transfer, and insulating zero-gap band structure.Comment: 11 pages + 4 figures (1 appended, others on request), LaTeX with REVTE

    Crystal Structures and Electronic Properties of Haloform-Intercalated C60

    Full text link
    Using density functional methods we calculated structural and electronic properties of bulk chloroform and bromoform intercalated C60, C60 2CHX3 (X=Cl,Br). Both compounds are narrow band insulator materials with a gap between valence and conduction bands larger than 1 eV. The calculated widths of the valence and conduction bands are 0.4-0.6 eV and 0.3-0.4 eV, respectively. The orbitals of the haloform molecules overlap with the π\pi orbitals of the fullerene molecules and the p-type orbitals of halogen atoms significantly contribute to the valence and conduction bands of C60 2CHX3. Charging with electrons and holes turns the systems to metals. Contrary to expectation, 10 to 20 % of the charge is on the haloform molecules and is thus not completely localized on the fullerene molecules. Calculations on different crystal structures of C60 2CHCl3 and C60 2CHBr3 revealed that the density of states at the Fermi energy are sensitive to the orientation of the haloform and C60 molecules. At a charging of three holes, which corresponds to the superconducting phase of pure C60 and C60 2CHX3, the calculated density of states (DOS) at the Fermi energy increases in the sequence DOS(C60) < DOS(C60 2CHCl3) < DOS(C60 2CHBr3).Comment: 11 pages, 7 figures, 4 table

    Minimising the impact of disturbances in future highly-distributed power systems

    Get PDF
    It is expected that future power systems will require radical distributed control approaches to accommodate the significant expansion of renewable energy sources and other flexible grid devices. It is important to rapidly and efficiently respond to disturbances by, for example: utilising adaptive, wide-area protection schemes; proactive control of available grid resources (such as managing the fault level contribution from converter-interfaced generation) to optimise protection functionality; and taking post-fault action to ensure protection stability and optimal system operation. This paper analyses and highlights the protection functions which will be especially important to minimising the impact of disturbances in future power systems. These functions include: fast-acting wide-area protection methods using Phasor Measurement Units (PMUs); adaptive and “self-organising” protection under varying system conditions; protection with distributed Intelligent Electronic Devices (IEDs); enhanced fault ride-through; and pattern recognition based schemes. In particular, the paper illustrates how the increased availability of measurements and communications can enable improved protection functionality within distribution systems, which is especially important to accommodate the connection of highly-distributed generation at medium- and low-voltages

    Multi-Orbital Hubbard Model in Infinite Dimensions: Quantum Monte Carlo Calculation

    Full text link
    Using Quantum Monte Carlo we compute thermodynamics and spectra for the orbitally degenerate Hubbard model in infinite spatial dimensions. With increasing orbital degeneracy we find in the one-particle spectra: broader Hubbard bands (consistent with increased kinetic energy), a narrowing Mott gap, and increasing quasi-particle spectral weight. In opposition, Hund's rule exchange coupling decreases the critical on-site Coulomb energy for the Mott transition. The metallic regime resistivity for two-fold degeneracy is quadratic-in-temperature at low temperatures.Comment: 4 pages, 4 figures, to be published in PR
    corecore