1,752 research outputs found

    Superresolving dendritic spines.

    Get PDF

    Image Processing for Cartographic Applications

    Get PDF
    The goal of classifying objects of cartographic interest in aerial photographs was approached using techniques from pattern recognition and image processing. Bridge and airport images were chosen as the initial objects of interest and segments of photographs containing them were digitized for the data base. Edge-detection and Hough transform algorithms identified structures as candidate bridges; additional decision logic (using global contrast and other attributes) further reduced the set. Results indicate the feasibility and low computational cost of the approach

    Molecular machines or pleiomorphic ensembles: signaling complexes revisited

    Get PDF
    Signaling complexes typically consist of highly dynamic molecular ensembles that are challenging to study and to describe accurately. Conventional mechanical descriptions misrepresent this reality and can be actively counterproductive by misdirecting us away from investigating critical issues

    Real-time optical manipulation of cardiac conduction in intact hearts

    Get PDF
    Optogenetics has provided new insights in cardiovascular research, leading to new methods for cardiac pacing, resynchronization therapy and cardioversion. Although these interventions have clearly demonstrated the feasibility of cardiac manipulation, current optical stimulation strategies do not take into account cardiac wave dynamics in real time. Here, we developed an all‐optical platform complemented by integrated, newly developed software to monitor and control electrical activity in intact mouse hearts. The system combined a wide‐field mesoscope with a digital projector for optogenetic activation. Cardiac functionality could be manipulated either in free‐run mode with submillisecond temporal resolution or in a closed‐loop fashion: a tailored hardware and software platform allowed real‐time intervention capable of reacting within 2 ms. The methodology was applied to restore normal electrical activity after atrioventricular block, by triggering the ventricle in response to optically mapped atrial activity with appropriate timing. Real‐time intraventricular manipulation of the propagating electrical wavefront was also demonstrated, opening the prospect for real‐time resynchronization therapy and cardiac defibrillation. Furthermore, the closed‐loop approach was applied to simulate a re‐entrant circuit across the ventricle demonstrating the capability of our system to manipulate heart conduction with high versatility even in arrhythmogenic conditions. The development of this innovative optical methodology provides the first proof‐of‐concept that a real‐time optically based stimulation can control cardiac rhythm in normal and abnormal conditions, promising a new approach for the investigation of the (patho)physiology of the heart

    Momentum-dependent charge correlations in YBa2_2Cu3_3O6+ÎŽ_{6+\delta} superconductors probed by resonant x-ray scattering: Evidence for three competing phases

    Full text link
    We have used resonant x-ray scattering to determine the momentum dependent charge correlations in YBa2_2Cu3_3O6.55_{6.55} samples with highly ordered chain arrays of oxygen acceptors (ortho-II structure). The results reveal nearly critical, biaxial charge density wave (CDW) correlations at in-plane wave vectors (0.315, 0) and (0, 0.325). The corresponding scattering intensity exhibits a strong uniaxial anisotropy. The CDW amplitude and correlation length are enhanced as superconductivity is weakened by an external magnetic field. Analogous experiments were carried out on a YBa2_2Cu3_3O6.6_{6.6} crystal with a dilute concentration of spinless (Zn) impurities, which had earlier been shown to nucleate incommensurate magnetic order. Compared to pristine crystals with the same doping level, the CDW amplitude and correlation length were found to be strongly reduced. These results indicate a three-phase competition between spin-modulated, charge-modulated, and superconducting states in underdoped YBa2_2Cu3_3O6+ÎŽ_{6+\delta}.Comment: 6 pages, 3 figures revised version, to appear in Phys. Rev. Let

    Similar zone-center gaps in the low-energy spin-wave spectra of NaFeAs and BaFe2As2

    Full text link
    We report results of inelastic-neutron-scattering measurements of low-energy spin-wave excitations in two structurally distinct families of iron-pnictide parent compounds: Na(1-{\delta})FeAs and BaFe2As2. Despite their very different values of the ordered magnetic moment and N\'eel temperatures, T_N, in the antiferromagnetic state both compounds exhibit similar spin gaps of the order of 10 meV at the magnetic Brillouin-zone center. The gap opens sharply below T_N, with no signatures of a precursor gap at temperatures between the orthorhombic and magnetic phase transitions in Na(1-{\delta})FeAs. We also find a relatively weak dispersion of the spin-wave gap in BaFe2As2 along the out-of-plane momentum component, q_z. At the magnetic zone boundary (q_z = 0), spin excitations in the ordered state persist down to 20 meV, which implies a much smaller value of the effective out-of-plane exchange interaction, J_c, as compared to previous estimates based on fitting the high-energy spin-wave dispersion to a Heisenberg-type model.Comment: 5 pages, 4 figures, 1 tabl
    • 

    corecore