43 research outputs found

    Directional and fluctuating asymmetry in finger and a-b ridge counts in psychosis: a case-control study

    Get PDF
    BACKGROUND: Several studies have reported alterations in finger and a-b ridge counts, and their derived measures of asymmetry, in schizophrenia compared to controls. Because ridges are fully formed by the end of the second trimester, they may provide clues to disturbed early development. The aim of this study was to assess these measures in a sample of patients with psychosis and normal controls. METHODS: Individuals with psychosis (n = 240), and normal controls (n = 228) were drawn from a catchment-area case-control study. Differences in finger and a-b ridge count and Fluctuating Asymmetry were assessed in three group comparisons (non-affective psychosis versus controls; affective psychosis versus controls; non-affective psychosis versus affective psychosis). The analyses were performed separately for males and females. RESULTS: There were no significant group differences for finger nor a-b ridge counts. While there were no group difference for Directional Asymmetry, for Fluctuating Asymmetry measures men with non-affective psychosis had significantly higher fluctuating asymmetry of the index finger ridge count (a) when compared to controls (FA-correlation score, p = 0.02), and (b) when compared to affective psychosis (adjusted FA-difference score, p = 0.04). CONCLUSION: Overall, measures of finger and a-b ridge counts, and their derived measures of directional and fluctuating asymmetry were not prominent features of psychosis in this sample. While directional asymmetry in cerebral morphology is reduced in schizophrenia, this is not reflected in dermatoglyphic variables

    The Spectrum of Neurological and White Matter Changes and Premutation Status Categories of Older Male Carriers of the FMR1 Alleles Are Linked to Genetic (CGG and FMR1 mRNA) and Cellular Stress (AMPK) Markers

    Get PDF
    The fragile X premutation (PM) allele contains a CGG expansion of 55–200 repeats in the FMR1 gene’s promoter. Male PM carriers have an elevated risk of developing neurological and psychiatric changes, including an approximately 50% risk of the fragile X-associated tremor/ataxia syndrome (FXTAS). The aim of this study was to assess the relationships of regional white matter hyperintensities (wmhs) semi-quantitative scores, clinical status, motor (UPDRS, ICARS, Tremor) scales, and cognitive impairments, with FMR1-specific genetic changes, in a sample of 32 unselected male PM carriers aged 39–81 years. Half of these individuals were affected with FXTAS, while the non-FXTAS group comprised subcategories of non-affected individuals and individuals affected with non-syndromic changes. The dynamics of pathological processes at the cellular level relevant to the clinical status of PM carriers was investigated using the enzyme AMP-activated protein kinase (AMPK), which is a highly sensitive cellular stress-sensing alarm protein. This enzyme, as well as genetic markers – CGG repeat number and the levels of the FMR1 mRNA – were assessed in blood lymphoblasts. The results showed that the repeat distribution for FXTAS individuals peaked at 85–90 CGGs; non-FXTAS carriers were distributed within the lowest end of the PM repeat range, and non-syndromic carriers assumed an intermediate position. The size of the CGG expansion was significantly correlated, across all three categories, with infratentorial and total wmhs and with all motor scores, and the FMR1 mRNA levels with all the wmh scores, whilst AMPK activity showed considerable elevation in the non-FXTAS combined group, decreasing in the FXTAS group, proportionally to increasing severity of the wmhs and tremor/ataxia. We conclude that the size of the CGG expansion relates to the risk for FXTAS, to severity of infratentorial wmhs lesions, and to all three motor scale scores. FMR1 mRNA shows a strong association with the extent of wmhs, which is the most sensitive marker of the pathological process. However, the AMPK activity findings – suggestive of a role of this enzyme in the risk of FXTAS – need to be verified and expanded in future studies using larger samples and longitudinal assessment

    Limb development genes underlie variation in human fingerprint patterns

    Get PDF
    Fingerprints are of long-standing practical and cultural interest, but little is known about the mechanisms that underlie their variation. Using genome-wide scans in Han Chinese cohorts, we identified 18 loci associated with fingerprint type across the digits, including a genetic basis for the long-recognized “pattern-block” correlations among the middle three digits. In particular, we identified a variant near EVI1 that alters regulatory activity and established a role for EVI1 in dermatoglyph patterning in mice. Dynamic EVI1 expression during human development supports its role in shaping the limbs and digits, rather than influencing skin patterning directly. Trans-ethnic meta-analysis identified 43 fingerprint-associated loci, with nearby genes being strongly enriched for general limb development pathways. We also found that fingerprint patterns were genetically correlated with hand proportions. Taken together, these findings support the key role of limb development genes in influencing the outcome of fingerprint patterning
    corecore