17 research outputs found

    Non-local ductile damage formulations for sheet bulk metal forming

    Get PDF
    A ductile damage model for sheet bulk metal forming processes and its efficient and accurate treatment in the context of the Finite Element Method is presented. The damage is introduced as a non-local field to overcome pathological mesh dependency. Since standard elements tend to show volumetric locking in the bulk forming process a mixed formulation is implemented in the commercial software simufact.forming to obtain better results.DFG/SFB/TR 7

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700

    About Statistical Analysis of Qualitative Survey Data

    Get PDF
    Gathered data is frequently not in a numerical form allowing immediate appliance of the quantitative mathematical-statistical methods. In this paper are some basic aspects examining how quantitative-based statistical methodology can be utilized in the analysis of qualitative data sets. The transformation of qualitative data into numeric values is considered as the entrance point to quantitative analysis. Concurrently related publications and impacts of scale transformations are discussed. Subsequently, it is shown how correlation coefficients are usable in conjunction with data aggregation constrains to construct relationship modelling matrices. For illustration, a case study is referenced at which ordinal type ordered qualitative survey answers are allocated to process defining procedures as aggregation levels. Finally options about measuring the adherence of the gathered empirical data to such kind of derived aggregation models are introduced and a statistically based reliability check approach to evaluate the reliability of the chosen model specification is outlined

    Towards the effective behaviour of polycrystalline microstructures at finite strains

    Get PDF
    It is well known that metals behave anisotropically on their microstructure due to their crystalline nature. FE-simulations in the metal forming field however sometimes lack the right macroscopic anisotropies as their type can be unspecific. In order to find a suitable effective elastoplastic material model, a finite crystal plasticity model is used to model the behaviour of polycrystalline materials in representative volume elements (RVEs) representing the microstructure, taking into account the plastic anisotropy due to dislocations occurring within considered slip systems. A multiplicative decomposition of the deformation gradient into elastic and plastic parts is performed, as well as the split of the elastic free energy into volumetric and deviatoric parts resulting in a compact expression of the resolved Schmid stress depending on the slip system vectors. In order to preserve the plastic incompressibility condition, the elastic deformation gradient is updated via an exponential map scheme. To further circumvent singularities stemming from the linear dependency of the slip system vectors, a viscoplastic power-law is introduced providing the evolution of the plastic slips and slip resistances. The model is validated with experimental microstructural data under deformation. Through homogenisation and optimisation techniques, effective stress-strain curves are determined and can be compared to results from real manufacturing and fabrication processes leading to an effective elastoplastic material model which is suitable for metal forming processes at finite strains

    Classification of Multiaxial Behaviour of Fine-Grained Concrete for the Calibration of a Microplane Plasticity Model

    No full text
    Fine-grained high-strength concrete has already been tested extensively regarding its uniaxial strength. However, there is a lack of research on the multiaxial performance. In this contribution, some biaxial tests are investigated in order to compare the multiaxial load-bearing behaviour of fine-grained concretes with that of high-strength concretes with normal aggregate from the literature. The comparison pertains to the general biaxial load-bearing behaviour of concrete, the applicability of already existing fracture criteria and the extrapolation for the numerical investigation. This provides an insight into the applicability of existing data for the material characterisation of this fine-grained concrete and, in particular, to compensate for the lack of investigations on fine-grained concretes in general. It is shown, that the calibration of material models for fine-grained concretes based on literature results or normal-grained concrete with similar strength capacity is possible, as long as the uniaxial strength values and the modulus of elasticity are known. For the numerical simulation, a Microplane Drucker–Prager cap plasticity model is introduced and fitted in the first step to the biaxial compression tests. The model parameters are set into relation with the macroscopic quantities, gained from the observable behaviour of the concrete under uniaxial and biaxial compressive loading. It is shown that the model is able to capture the yielding and hardening effects of fine-grained high-strength concrete in different directions

    Low-level mixed-phase clouds in a complex Arctic environment

    Get PDF
    Low-level mixed-phase clouds (MPCs) are common in the Arctic. Both local and large-scale phenomena influence the properties and lifetime of MPCs. Arctic fjords are characterized by complex terrain and large variations in surface properties. Yet, not many studies have investigated the impact of local boundary layer dynamics and their relative importance on MPCs in the fjord environment. In this work, we used a combination of ground-based remote sensing instruments, surface meteorological observations, radiosoundings, and reanalysis data to study persistent low-level MPCs at Ny-Alesund, Svalbard, for a 2.5-year period. Methods to identify the cloud regime, surface coupling, and regional and local wind patterns were developed. We found that persistent low-level MPCs were most common with westerly winds, and the westerly clouds had a higher mean liquid (42 g m(-2)) and ice water path (16 g m(-2)) compared to those with easterly winds. The increased height and rarity of persistent MPCs with easterly free-tropospheric winds suggest the island and its orography have an influence on the studied clouds. Seasonal variation in the liquid water path was found to be minimal, although the occurrence of persistent MPCs, their height, and their ice water path all showed notable seasonal dependency. Most of the studied MPCs were decoupled from the surface (63 %-82 % of the time). The coupled clouds had 41 % higher liquid water path than the fully decoupled ones. Local winds in the fjord were related to the frequency of surface coupling, and we propose that katabatic winds from the glaciers in the vicinity of the station may cause clouds to decouple. We concluded that while the regional to large-scale wind direction was important for the persistent MPC occurrence and properties, the local-scale phenomena (local wind patterns in the fjord and surface coupling) also had an influence. Moreover, this suggests that local boundary layer processes should be described in models in order to present low-level MPC properties accurately

    Absorption Properties of Supercooled Liquid Water between 31 and 225 GHz: Evaluation of Absorption Models Using Ground-Based Observations

    No full text
    Microwave radiometers (MWR) are commonly used to quantify the amount of supercooled liquid water (SLW) in clouds; however, the accuracy of the SLW retrievals is limited by the poor knowledge of the SLW dielectric properties at microwave frequencies. Six liquid water permittivity models were compared with ground-based MWR observations between 31 and 225 GHz from sites in Greenland, the German Alps, and a low-mountain site; average cloud temperatures of observed thin cloud layers range from 0 degrees to -33 degrees C. A recently published method to derive ratios of liquid water opacity from different frequencies was employed in this analysis. These ratios are independent of liquid water path and equal to the ratio of alpha(L) at those frequencies that can be directly compared with the permittivity model predictions. The observed opacity ratios from all sites show highly consistent results that are generally within the range of model predictions; however, none of the models are able to approximate the observations over the entire frequency and temperature range. Findings in earlier published studies were used to select one specific model as a reference model for alpha(L) at 90 GHz; together with the observed opacity ratios, the temperature dependence of alpha(L) at 31.4, 52.28, 150, and 225 GHz was derived. The results reveal that two models fit the opacity ratio data better than the other four models, with one of the two models fitting the data better for frequencies below 90GHz and the other for higher frequencies. These findings are relevant for SLW retrievals and radiative transfer in the 31-225-GHz frequency region

    p Multi-year cloud and precipitation statistics observed with remote sensors at the high-altitude Environmental Research Station Schneefernerhaus in the German Alps

    Get PDF
    Clouds and precipitation over mountainous terrain are a challenge for models and observations alike. In this study, we exploit a unique, nearly one decade long dataset of collocated microwave radiometer, radar, ceilometer, and auxiliary observations collected at the Environmental Research Station Schneeferner-haus (UFS). Located at 2650 m a.s.l. just 300 m below the summit of Zugspitze, Germany's highest mountain, this dataset allows a combined view on water vapor, clouds, and precipitation. Annual and diurnal cycles of water vapor, cloud liquid water, cloud ice, rainfall, and snowfall rate are investigated. Strong diurnal cycles during summer in several observables indicate a strong coupling with the surface and convective transport of air from the surrounding valleys to the level of UFS resulting in maximum amounts in integrated water vapor (IWV), cloud liquid water path (LWP) and rain during the afternoon. In contrast, no diurnal cycle is found during winter, which points to the predominance of advection of cloud systems associated with large scale dynamics during winter. Daily precipitation estimates for snowfall and rainfall derived from a verti-cally pointing, low-cost micro rain radar (MRR) are found to be in good agreement with manual observations from the German Weather Service at the summit. Exploiting the synergy of MRR and microwave radiometer measurements revealed that almost 90 % of the snow clouds contained signif cant amounts of super-cooled LWP but only a weak correlation between snowfall rate and LWP is found. The still growing data set at this very particular location, also in combination with further observations, such as trace gases and aerosols, has a unique potential for many applications, e.g. to investigate cloud processes, evaluate high resolution models, and to validate satellite products
    corecore