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E-mail: beese@ikm.uni-hannover.de

Abstract. A ductile damage model for sheet bulk metal forming processes and its efficient
and accurate treatment in the context of the Finite Element Method is presented. The damage
is introduced as a non-local field to overcome pathological mesh dependency. Since standard
elements tend to show volumetric locking in the bulk forming process a mixed formulation is
implemented in the commercial software simufact.forming to obtain better results.

1. Introduction

The sheet bulk metal forming process [4] is characterized by large plastic bulk deformation of a
metal sheet. This way it is possible to create functional parts, such as gears or drivers just by
forming and without additional cutting processes. In order to simulate such challenging processes
an accurate material model and non standard numerical techniques are required. To model the
plastic behaviour the framework of elastic isomorphism, see e.g. [1, 10] is used and coupled
to a continuum damage model. To circumvent the mesh depended localisation of such models
a gradient enhanced non-local theory [5, 2] is used. Since the plastic deformation is nearly
incompressible, standard finite elements will show volumetric locking behaviour. Therefore
a strategy based on a mixed formulation is presented and implemented in the simulation
environment simufact.forming.

2. Elasto-Plastic Material Model

Because of its general applicability and its straight forward derivation the concept of elastic
isomorphism as e.g. proposed by Bertram [1] or Svendsen [10] is used for the formulation of
the elasto-plastic constitutive laws. This concept states, that for every plastic deformation
the elastic material response remains unchanged. If the stored elastic energy for an elastically
isotropic material ) = ¢(C,P) is a function of the right CAUCHY-GREEN Tensor C' and the
plastic Transformation P, then this concept necessarily leads to a functional relationship of the
form:

Y(C,P) = (PTCP) = ¢(CF) with  CF.=PTCP. (1)

By introducing a yield function ®(M?¥, oy), where M E is the elastic MANDEL stress, the elastic
range is defined for all stress states by a to negative value of ®. For ® = 0 plastic yielding takes
place and P is assumed to evolve by means of the principle of maximum dissipation. Because of
isotropic hardening the elastic range will grow during yielding. To model this effect in a physical
meaningful way, we introduce an internal variable £ which is proportional to the square root of

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



Numisheet IOP Publishing
Journal of Physics: Conference Series 734 (2016) 032059 doi:10.1088/1742-6596/734/3/032059

a) %—»x b) ¢ N] c) .

h 200 Local reaction force Non-local reaction force
3!? v f 200
|

A

Nl |

1 150+ | 16
(o} ] /
) I |

| 64
100} | 256
| 1024

|
150 — 16

100] 256

] 1024
50 | 50l

{,) (:)1 “‘
L_A N 1 X7 11 |
2 01000008 0. S X2 (X7 TR X O

Figure 1. One dimensional Boundary Value Problem a) with local b) and non-local ¢) Reaction
Forces depending on the mesh size. Final damage distribution for the local d) and non-local e)
case.

the dislocation density on the micro scale of the considered steel. The evolution of this internal
variable is motivated by elementary processes on the microlevel, see e.g. Stainier et.al. [9]:

€= H(goo — OX. (2)

As last ingredient of our model the dissipative effect of damage is considered. Here the
anisotropically extended LEMAITRE damage model of Soyarslan et.al. [8] is used. Despite their
original idea of splitting the stresses in positive and negative parts by means of an eigenvalue
decomposition and using the complementary energy function, we use a split of the free energy
function v = )+ +1~ depending on either the positive or negative eigenvalues of the strain like
quantity (C¥ — 1). The damage potential then reads:

s+ 1 S 1—¢)8’ )

_ +1
oo 5 <—<w++h-w )—Yo>s 1
(
where h € [0, 1] weights the compression part 1. In equation (3) ¢ € [0,1] is the local damage
factor and {S, s, 8} are material parameters for this model. The evolution of the scalar damage
variable ¢ is then obtained by an associative evolution law.

3. Non-Local Damage Model

It is well known that local softening materials exhibit a strong mesh dependency [6]. The
smaller the elements become the earlier a fully degraded element will cause a singular tangent
stiffness matrix. One efficient way to circumvent these issues is the application of a non-local
theory. This is done by the introduction of a new field variable, the non-local damage ¢ and
by coupling the local damage variable ¢ to its non-local counter part ¢ and its gradient V.
Computationally this results in solving an additional equation with homogeneous NEUMANN
boundary conditions in the entire domain €2:

-0V -Vo=¢ YreQ with: Vé-n=0 Vae . (4)

This form is either known as implicit gradient formulation [5] or as micromorphic damage
model [2]. The constant ¢ represents an internal length scale which in general is determined
by experiments for the considered material. In the limiting case of £ — 0, the purely local model
is obtained. The benefit of additional stability has to be paid by an increase of computational
costs by a factor of about 1.3, assuming the same mesh is used as for the standard local damage
simulation.

The functionality of the model is best explained by the one dimensional example shown in Fig.
1. There, a clamped beam is exposed to a displacement boundary condition and the reaction
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Figure 2. Setup of COOK’s Membrane problem (left) with convergence of the reaction force
(middle) and resulting pressure field (right).

forces are recorded depending on the number of elements used for the discretisation. The yield
strength is reduced by a factor of 0.99 for the two elements in the middle of the beam. While
the reaction force for the non-local model converges to a stable solution the local model tends to
diverge. The reason is the small domain (one integration point) where the damage is localising.
In the non-local model the damage evolution is spread also to some neighbouring elements. In
this example the ratio g is 0.1.

4. Finite Element Formulation and Implementation

The balance equation for the non-local damage (4) and the linear momentum balance is solved
by the finite element method. However, standard low order displacement finite elements tend
to show volumetric locking behaviour when plastically incompressible materials are involved.
Especially in sheet bulk metal forming processes this is often observed when functional elements
are formed by large bulk deformations. There is a huge variety of element technologies to treat
this issue and a very simply and quite effective technique was first reported by Simo et.al. [7].
This is based on the HU-WASHIZU variational formulation, where the additional fields p and J
are introduced and the free energy function is additively split into an isochoric part ¢i50(C£0)
and a volumetric part vol(J - det(P)). The HU-WASHIZU potential then reads:

"W (u,p, J) = A Yiso(CE,) + yvol(J - det(P)) + p(det(F) — J) AV, (5)

where the last term penalises the deviation of J from the determinant of the deformation gradient
det(F'). By computing the variation of eq. (5) the field p is identified as the hydrostatic pressure.
In order to avoid additional equations in the global equation system piecewise constant shape
functions are used for the discretisation of {p, J} and a static condensation is performed. The
displacement field u and the non-local damage ¢ are discretised by standard low order shape
function of LAGRANGE type. To show the performance of the presented mean dilatation
(MD) element the classical COOK’s membrane problem is solved using the hexahedral 8 node
MD element and compared to the results of a higher order tetrahedral element. In figure 2
the problem setup is shown as well as the convergence behaviour and the resulting pressure
distribution. Especially for coarse discretisations the presented element performs good and the
convergence rate for finer meshes is comparable to the 10 node tetrahedral element.

The implementation is done in the commercial FE software simufact.forming as a new user
element in subroutine USELEM. To circumvent difficulties of the built in contact formulation
regarding the additional degrees of freedom needed for the field ¢, just a weak coupling of
damage the equation and the linear momentum is realized. Therefore in every load step first the
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Figure 3. simufact.forming model and re-
sulting damage distribution for demonstrator
test problem

Figure 4. simufact.forming model and re-
sulting damage distribution for deep drawing
test problem

damage equation is solved and afterwards the mechanical equilibrium is calculated by means of a
NEWTON-RHAPSON iteration. For post processing purposes an interface to the visualisation
software ParaView is implemented.

5. Testcases

Two examples are considered to reflect the main load cases of sheet bulk metal forming. The
first is a demonstrator problem which was first considered in [3]. In this example eight punches
are placed in an axisymmetric way and they coin a round sheet of metal. In figure 3 on the
left the simufact.forming model is shown and on the right the deformed configuration and the
resulting damage distribution are shown. Compared to the local model the damage field is
more smooth and the absolute value is identical at each indent, so damage is not localising
in this example. The other main load case is a bending dominated problem. In figure 4 the
demonstration problem of simufact.forming for deep drawing is shown. As expected the main
region for damage accumulation is the rounding between bottom an wall of the cup. To validate
the numerical model experimental tests for the two examples are in preparation.
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