381 research outputs found

    Effects of cobalt chloride on haem synthesis in isolated hepatocytes

    Get PDF

    Theoretical Model of EphA2-Ephrin A1 Inhibition

    Get PDF
    This work aims at the theoretical description of EphA2-ephrin A1 inhibition by small molecules. Recently proposed ab initio-based scoring models, comprising long-range components of interaction energy, is tested on lithocholic acid class inhibitors of this protein⁻protein interaction (PPI) against common empirical descriptors. We show that, although limited to compounds with similar solvation energy, the ab initio model is able to rank the set of selected inhibitors more effectively than empirical scoring functions, aiding the design of novel compounds

    The non-indigenous Paranthura japonica Richardson, 1909 in the Mediterranean Sea: travelling with shellfish?

    Get PDF
    An anthurid isopod new to the Mediterranean Sea has recently been observed in samples from three localities of the Italian coast: the Lagoon of Venice (North Adriatic Sea), La Spezia (Ligurian Sea) and Olbia (Sardinia, Tyrrhenian Sea). The specimens collected showed strong affinity to a species originally described from the NW Pacific Ocean: Paranthura japonica Richardson, 1909. The comparison with specimens collected from the Bay of Arcachon (Atlantic coast of France), where P. japonica had been recently reported as non-indigenous, confirmed the identity of the species. This paper reports the most relevant morphological details of the Italian specimens, data on the current distribution of the species and a discussion on the pathways responsible for its introduction. The available data suggest that the presence of this Pacific isopod in several regions of coastal Europe might be due to a series of aquaculture-mediated introduction events that occurred during the last decades of the 1900s. Since then, established populations of P. japonica, probably misidentified, remained unnoticed for a long time

    Design and SAR Analysis of Covalent Inhibitors Driven by Hybrid QM/MM Simulations

    Get PDF
    Quantum mechanics/molecular mechanics (QM/MM) hybrid technique is emerging as a reliable computational method to investigate and characterize chemical reactions occurring in enzymes. From a drug discovery perspective, a thorough understanding of enzyme catalysis appears pivotal to assist the design of inhibitors able to covalently bind one of the residues belonging to the enzyme catalytic machinery. Thanks to the current advances in computer power, and the availability of more efficient algorithms for QM-based simulations, the use of QM/MM methodology is becoming a viable option in the field of covalent inhibitor design. In the present review, we summarized our experience in the field of QM/MM simulations applied to drug design problems which involved the optimization of agents working on two well-known drug targets, namely fatty acid amide hydrolase (FAAH) and epidermal growth factor receptor (EGFR). In this context, QM/MM simulations gave valuable information in terms of geometry (i.e., of transition states and metastable intermediates) and reaction energetics that allowed to correctly predict inhibitor binding orientation and substituent effect on enzyme inhibition. What is more, enzyme reaction modelling with QM/MM provided insights that were translated into the synthesis of new covalent inhibitor featured by a unique combination of intrinsic reactivity, on-target activity, and selectivity

    Different roles for the acyl chain and the amine leaving group in the substrate selectivity of N-Acylethanolamine acid amidase

    Get PDF
    N-acylethanolamine acid amidase (NAAA) is an N-terminal nucleophile (Ntn) hydrolase that catalyses the intracellular deactivation of the endogenous analgesic and anti-inflammatory agent palmitoylethanolamide (PEA). NAAA inhibitors counteract this process and exert marked therapeutic effects in animal models of pain, inflammation and neurodegeneration. While it is known that NAAA preferentially hydrolyses saturated fatty acid ethanolamides (FAEs), a detailed profile of the relationship between catalytic efficiency and fatty acid-chain length is still lacking. In this report, we combined enzymatic and molecular modelling approaches to determine the effects of acyl chain and polar head modifications on substrate recognition and hydrolysis by NAAA. The results show that, in both saturated and monounsaturated FAEs, the catalytic efficiency is strictly dependent upon fatty acyl chain length, whereas there is a wider tolerance for modifications of the polar heads. This relationship reflects the relative stability of enzyme-substrate complexes in molecular dynamics simulations

    N-Acylethanolamine Acid Amidase (NAAA): Mechanism of Palmitoylethanolamide Hydrolysis Revealed by Mechanistic Simulations

    Get PDF
    The N-terminal cysteine hydrolase N-acylethanolamine acid amidase (NAAA) catalyzes the hydrolytic deactivation of the lipid messenger palmitoylethanolamide (PEA), with optimal activity at acidic pH. Using the crystal structure of human NAAA as a starting point, we investigated the catalytic mechanism of PEA hydrolysis with a multiscale approach based on classic molecular dynamics (MD) and quantum mechanical/molecular mechanics (QM/MM) simulations coupled with enhanced sampling and path-collective variables (PCVs). The proton configuration of the catalytic nucleophile, Cys126, and of the surrounding carboxylates was critical to preserve the active site architecture. A stable Michaelis complex was then used to reconstruct the free-energy surfaces of NAAA acylation and deacylation during PEA hydrolysis. Acylation emerged as the critical step, with Cys126 acting both as an acid, to protonate the ethanolamine leaving group, and as a nucleophile, to attack the PEA carbonyl carbon. The ethanol fragment of PEA did not appear to play an indispensable role in acylation, a result further supported by kinetic experiments showing that NAAA hydrolyzes palmitoyl methyl amide (PMA) with high catalytic efficiency. Our multiscale approach identified a distinctive protonation state and catalytic mechanism for NAAA which accounts for pH-dependent activity, mutagenesis data, and mechanism of covalent inhibitors

    Metadynamics Simulations Distinguish Short- and Long-Residence-Time Inhibitors of Cyclin-Dependent Kinase 8.

    Get PDF
    The duration of drug efficacy in vivo is a key aspect primarily addressed during the lead optimization phase of drug discovery. Hence, the availability of robust computational approaches that can predict the residence time of a compound at its target would accelerate candidate selection. Nowadays the theoretical prediction of this parameter is still very challenging. Starting from methods reported in the literature, we set up and validated a new metadynamics (META-D)-based protocol that was used to rank the experimental residence times of 10 arylpyrazole cyclin-dependent kinase 8 (CDK8) inhibitors for which target-bound X-ray structures are available. The application of reported methods based on the detection of the escape from the first free energy well gave a poor correlation with the experimental values. Our protocol evaluates the energetics of the whole unbinding process, accounting for multiple intermediates and transition states. Using seven collective variables (CVs) encoding both roto-translational and conformational motions of the ligand, a history-dependent biasing potential is deposited as a sum of constant-height Gaussian functions until the ligand reaches an unbound state. The time required to achieve this state is proportional to the integral of the deposited potential over the CV hyperspace. Average values of this time, for replicated META-D simulations, provided an accurate classification of CDK8 inhibitors spanning short, medium, and long residence times

    Investigación arqueométrica de los ladrillos de las antiguas murallas defensivas de la ciudad de Pavía (norte de Italia)

    Get PDF
    A study was conducted on bricks sampled from the defense walls around the historic town of Pavia (northern Italy) erected during Roman (uncertain) and “Spanish”(sixteenth-seventeenth centuries) times. An analysis of colour, macro- and micro-chemical composition,mineralogical clusters and structural-textural features showed that similar raw materials were used in the manufacture of these bricks, although certain variations were identified: particle size is finer in Roman bricks, while the “Spanish” version contains ground carbonate and “chamotte” additives. The “Spanish” bricks,fired at lower temperatures, are more porous. The wide range of firing temperatures used to make “Spanish” bricks was very likely related to the intended use. The sporadic presence of maghemite is discussed in the context of the atmosphere prevailing in the kilns. The “Spanish” bricks are lighter in colour as a result of their carbonate content and lower firing temperature. These characteristics, which affect the weather resistance of the different types of brick, should be taken into account in restoration work.Se investigan ladrillos recogidos en las murallas defensivas de la histórica ciudad de Pavía (norte de Italia), que fueron construidas en tiempos romanos (no establecidos)y “españoles” (siglos XVI y XVII).En base al color, composición química tanto total como puntual, asociaciones mineralógicas y características texturales,se concluye que se utilizó una materia prima similar en ambas épocas, con algunas particularidades: granulometría más fina en los romanos, adición de carbonato molido y chamota en los “españoles”. Por su parte, la porosidad es mayor en los ladrillos “españoles”. El amplio rango de temperaturas de cocción observado para estos últimos debe estar relacionado con los distintos usos para los cuales fueron destinados. La presencia esporádica de maghemita se discute, además, en función del tipo de atmósfera imperante en el horno de cocción. El color de los ladrillos “españoles” es más claro, como corresponde a su mayor contenido en carbonatos y menor temperatura de cocción. Estas características ejercen una notable influencia en la resistencia a la meteorización de los distintos tipos de ladrillos y deben, ser tenidas en cuenta ala hora de elaborar posibles planes de restauración

    Anisakis spp. larvae in different kinds of ready to eat products made of anchovies (Engraulis encrasicolus) sold in Italian supermarkets

    Get PDF
    In this study the occurrence of visible anisakid larvae in semi-preserved anchovy products sold on the Italian market was investigated. Totally, 107 ready to eat products (33 salted-ripened, 49 in oil and 25 marinated) were sampled. Each sample was digested, then the digested material was observed under natural and UV light. Parasites were counted, collected and microscopically identified to genus level. A representative subset was molecularly identified using the cox2 gene. At least one visible Anisakis sp. larva was found in 54.2% of the total 107 products analysed and totally 1283 dead larvae were collected. Anisakis sp. larvae were found in all the 33 salted products and 1139 (88.8%) larvae were collected, with a range of 1â105 parasites per product. Larval density per gram was 0.13. Anisakis sp. larvae were found in 49.0% of the products in oil and 143 (11.1%) larvae were isolated, with a range of 0â28 and a density of 0.03. Only 1 larva was found in the 25 marinated products (4.0%, density 0.00). A highly significant difference between all the product categories in respect of number of larvae per product, frequency of products contaminated by at least one larva and larval density per gram was found. Within the subset of larvae molecularly analysed (n = 122), 92 (75.4%) were identified as A. pegreffii and 30 (24.6%) as A. simplex. This study showed that semi-preserved anchovy products heavily contaminated with Anisakis spp. larvae reach the market. Beyond the negligible risk for anisakidosis, the presence of dead visible parasites may cause immediate rejection in consumers. In addition, the potential risk related to allergic reactions in sensitized individuals needs to be further assessed. In order to avoid commercialization of obviously contaminated products, fresh anchoviesâ batches intended for the production of such products should be accurately selected by the processing industry applying inspection methods

    N-Acylethanolamine Acid Amidase (NAAA): Structure, Function, and Inhibition

    Get PDF
    N-Acylethanolamine acid amidase (NAAA) is an N-terminal cysteine hydrolase primarily found in the endosomal-lysosomal compartment of innate and adaptive immune cells. NAAA catalyzes the hydrolytic deactivation of palmitoylethanolamide (PEA), a lipid-derived peroxisome proliferator-activated receptor-α (PPAR-α) agonist that exerts profound anti-inflammatory effects in animal models. Emerging evidence points to NAAA-regulated PEA signaling at PPAR-α as a critical control point for the induction and the resolution of inflammation and to NAAA itself as a target for anti-inflammatory medicines. The present Perspective discusses three key aspects of this hypothesis: the role of NAAA in controlling the signaling activity of PEA; the structural bases for NAAA function and inhibition by covalent and noncovalent agents; and finally, the potential value of NAAA-targeting drugs in the treatment of human inflammatory disorders
    corecore