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Abstract: This work aims at the theoretical description of EphA2-ephrin A1 inhibition by small
molecules. Recently proposed ab initio-based scoring models, comprising long-range components of
interaction energy, is tested on lithocholic acid class inhibitors of this protein–protein interaction (PPI)
against common empirical descriptors. We show that, although limited to compounds with similar
solvation energy, the ab initio model is able to rank the set of selected inhibitors more effectively than
empirical scoring functions, aiding the design of novel compounds.
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1. Introduction

The erythropoietin-producing hepatocellular carcinoma (Eph) receptors are probably the largest
family of receptor tyrosine kinases (RTKs) and includes 14 members [1] divided into class A (EphA)
and class B (EphB), based on the binding affinity for their ligands (ephrins, also divided into classes A
and B), and sequence homology [2]. Ephrins are membrane proteins with the A class connected to the
membrane by a phosphatidylinositol (GPI) linker, and the B class linked via a hydrophobic domain.
While interclass binding has been reported [3,4], ephrin A-type ligands generally bind to EphA
receptors, whereas ephrin B-type ligands interact with EphB receptors.

The Eph-ephrin signaling system is known to play important and diverse biological functions that
involve cell–cell interactions both during embryonic development and for maintaining homeostasis in
adult cells. For instance, in embryos, the Eph-ephrin system finely tunes tissue boundary formation,
including central nervous system patterning [5], while in adults it controls bone and intestinal
homeostasis, immune system functions and angiogenic processes. The Eph-ephrin system is currently
gaining interest in the context of drug discovery as it has been found hyperactivated in several
cancers [6]. Among the cloned Eph receptor subtype, EphA2 has been studied the most in the
oncology field since the overexpression and/or the hyperactivation of this receptor has been linked
to the insurgence and progression of several cancer types, including brain, lung, breast, ovarian
and prostate [7]. Moreover, the abnormal activity of this receptor has been associated with poor
prognosis [8]. Due to its increasing recognition as a tumorigenic protein, the EphA2 receptor has
gained interest as a target protein for novel cancer therapies [9].

One of the available approaches targeting Eph-ephrin system (and EphA2 with its physiological
ligand, ephrin-A1, in particular) involves small molecule inhibitors [1] able to prevent ephrin-A1
binding to EphA2. Several classes of inhibitors of this specific protein–protein interaction (PPI) have
been recently identified [10–12]. The most promising class is represented by lithocholic acid (LCA)
and its α-amino acid conjugates [7,13]. It has been demonstrated by surface plasmon resonance (SPR)
analysis that this class of compounds prevents ephrin-A1 binding to EphA2 by targeting a conserved
region of the ligand-binding domain of EphA2 [14,15].
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Molecular modeling investigations performed with classical force fields have identified a likely
binding mode for these inhibitors consistent with available structure–activity relationship (SAR) data,
i.e., proposing a reasonable role for the terminal carboxylic group and the amino acid side-chain of
the inhibitors during their docking within EphA2 [13,14]. However, attempts to build quantitative
models correlating experimental activities to docking energies led to modest results [13], suggesting
that classical methods may not be able to properly describe accommodation of amino acid conjugates
of LCA within EphA2 ligand binding domain (LBD).

Ligand-receptor binding is often examined using empirical or semi-empirical methods with a
diverse level of success [16–19], particularly in terms of the virtual screening campaigns. A way to
improve the quality of the results could involve ab initio calculations, but due to the computational
time required, these are rather impractical in the screening of potential drug candidates. On the
other hand, quantum chemical calculations are able to provide insight into the physical nature of
the receptor–ligand interactions. Studying small-molecule PPI inhibition is usually more challenging
than evaluation of interactions in regular protein–ligand complexes [20]. For instance, binding
cavities for inhibitors targeting PPIs are flat and often featured by the presence of aromatic residues,
such as Phe, Tyr or Trp residues [21]. Empirical scoring functions, commonly used for scoring of
receptor–ligand interactions, are not really suited for PPIs [22,23]. Despite the fact that some empirical
and semi-empirical approaches have been applied to score PPI inhibitors with moderate success [24–27],
ab initio derived models appear to be better suited for studying PPI recognition by small molecules,
since they offer a detailed insight into the physical basis of such interactions.

When polar or charged systems are investigated, the computationally inexpensive non-empirical
electrostatic term is sufficient to model the experimental data [28,29]. However, accounting for the
dispersive interactions is required for a general description targeting any receptor–ligand complex,
irrespectively of the physical nature of binding within such a system [30]. While non-empirical
evaluation of the multipole electrostatic term conveniently scales with the size of the complex
under study as the squared number of atoms, ab initio calculations of dispersion energy are
computationally demanding, scaling with at least the fifth power of the number of atomic orbitals.
However, dispersion interactions could be approximated, for instance, by the EDas function, which
successfully describes non-covalent interactions with atom–atom potentials fitted to reproduce the
results of high-level quantum chemical calculations [31,32]. Recently developed non-empirical
model comprising long-range terms of interaction energy, i.e., multipole electrostatic moment and
dispersion contribution approximated by EDas function [31,32], which offers a great enhancement
in the computational time, was already tested on several systems, including essentially non-polar
complexes of fatty acid amide hydrolase (FAAH) [33], pteridine reductase 1 (TbPTR1) featuring both
dispersive and electrostatic interactions [34], and menin-mixed lineage leukemia (MLL) system [35], in
which electrostatic interactions are dominant.

Such an approach neglects, among other entropic contributions, the influence of solvation effects.
To include the latter, one would need a much more time-consuming method, for instance free-energy
perturbation (FEP), Molecular Mechanics/Poisson-Boltzmann, Molecular Mechanics/Generalized
Born Surface Area (MM/GBSA and MM/PBSA, respectively) [36] or Fragment Molecular Orbital
(FMO) approach [37]. The quantum chemical methods (like DFT or MP2) are rather not combined
with empirical solvation or ligand entropy estimates [36], and therefore they should work only if the
neglected contributions to the energy of binding are similar within the studied set of complexes.

In the work presented herein, we attempt to reproduce the experimental ranking of a congeneric
series of EphA2-ephrin A1 inhibitors [38] (shown in Table 1) with a recently developed simple ab initio
model comprising multipole electrostatic and dispersion contributions, E(10)

EL,MTP + EDas. Such a model
was previously validated on another set of protein–protein inhibitors [35], and not only the inhibitory
activity ranking was reproduced, but novel inhibitors (i.e., not present in the training set) were
successfully scored. We show here that if we limit our analysis to a set of EphA2-ephrin A1 inhibitors
featuring similar solvation energy, ab initio modeling of the interactions provides computational
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results which parallel experimental potency data well. Moreover, such a model is able to outperform
several commonly used empirical scoring functions.

Table 1. The structures and experimental activity a of inhibitors targeting EphA2-ephrin A1 interaction.
The numbering of the structures is consistent with Table 1 from [13].

HO
H

O

X

Inhibitor X Substituent pIC50

2 (Gly) COOHN
H 4.31

4 (L-Ala) COOHN
H

CH3

4.70

5 (D-Ala) COOHN
H

CH3

4.51

6 (L-Val) COOHN
H

CH3H3C

4.62

7 (D-Val) COOHN
H

CH3H3C

4.76

8 (L-Ser) COOHN
H

HO

4.48

9 (D-Ser) COOHN
H

HO

4.22

14 (L-Met) COOHN
H

S
H3C

4.56

15 (D-Met) COOHN
H

S
H3C

4.56

16 (L-Phe) COOHN
H 5.18

17 (D-Phe) COOHN
H 5.12
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Table 1. Cont.

Inhibitor X Substituent pIC50

18 (L-Tyr) COOHN
H

HO

4.30

19 (D-Tyr) COOHN
H

HO

4.00

20 (L-Trp) COOHN
H

HN

5.69

21 (D-Trp) COOHN
H

HN

4.69

a pIC50 values are taken from [13].

2. Results and Discussion

EphA2 binding site representation, shown in Figure 1, comprises six amino acid residues: Cys70,
Cys188, Phe108, Arg103, Val72 and Met73 (more details regarding the model are given in the Materials
and Methods section). All 15 analyzed inhibitors (Table 1) shared a similar binding mode [13], with
a –COOH group facing Arg103 residue, in agreement with SAR data. Moreover, their common LCA
scaffold was positioned almost identically. Thus, this steroidal moiety was excluded from the analysis
and the compounds were cut in a way indicated by the red line in Table 1. Accordingly, the inhibitors
were represented by smaller entities corresponding to the variable part of the inhibitor structure.
Binding poses of models of two inhibitors, 20 (L-Trp derivative) and 19 (D-Tyr derivative), i.e., the
most and least potent compounds, respectively, are presented in Figure 1.

20
19

Cys70

Cys188

Phe108

Arg103

Val72Met73

Figure 1. EphA2 binding site representation with bound inhibitors 19 (D-Tyr) and 20 (L-Trp).
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2.1. Theoretical Models

Total binding energy values of EphA2 inhibitors for consecutive levels of Hybrid
Variation–Perturbation Theory (HVPT) [39,40] and, in addition, E(10)

EL,MTP + EDas energy results, are
provided in Table 2. Pairwise interaction energy values between each inhibitor and a given amino acid
residue are given in Table S1 in Supplementary Materials. Apparently, the main contribution to the
total interaction energy calculated at the MP2 level of theory is due to the electrostatic energy. As a
result, E(10)

EL and EMP2 energy values are comparable in magnitude (Table 2).

Table 2. Total EphA2-inhibitor interaction energy a at the consecutive levels of theory.

Inhibitor pIC50
b E(10)

EL,MTP E(10)
EL E(10) ESCF EMP2 E(10)

EL,MTP + EDas

20 (L-Trp) 5.69 −89.2 −101.3 −66.5 −83.5 −102.7 −118.0
16 (L-Phe) 5.18 −90.7 −102.5 −65.6 −86.1 −100.5 −115.3
17 (D-Phe) 5.12 −98.5 −111.4 −70.1 −92.6 −109.6 −127.0
7 (D-Val) 4.76 −75.2 −83.3 −65.7 −77.4 −87.7 −91.3
4 (L-Ala) 4.70 −97.1 −108.5 −73.7 −94.1 −103.5 −116.5

21 (D-Trp) 4.69 −72.8 −82.3 −57.9 −70.9 −90.8 −99.4
6 (L-Val) 4.62 −99.3 −110.0 −71.9 −94.4 −104.4 −120.4

14 (L-Met) 4.56 −89.9 −101.1 −69.1 −87.7 −100.7 −112.3
15 (D-Met) 4.56 −80.5 −89.5 −67.3 −80.6 −94.2 −101.5
5 (D-Ala) 4.51 −75.1 −82.2 −66.7 −76.9 −85.6 −88.9
8 (L-Ser) 4.48 −85.9 −96.6 −70.4 −86.2 −95.5 −103.7
2 (Gly) 4.31 −64.6 −69.3 −56.2 −65.0 −72.5 −75.7

18 (L-Tyr) 4.30 −65.9 −73.2 −55.3 −65.3 −79.4 −85.3
9 (D-Ser) 4.22 −69.0 −74.7 −62.6 −71.4 −81.1 −83.2

19 (D-Tyr) 4.00 −65.3 −74.1 −55.8 −66.5 −81.9 −85.7

R c −0.63 −0.65 −0.44 −0.55 −0.69 −0.72

Npred
d 75.0 76.9 65.4 69.2 75.0 77.9

SE e 10.1 11.5 5.6 9.0 8.2 11.5
a In units of kcal · mol−1; b pIC50 values are taken from [13]; c Correlation coefficient between the energy obtained
at a given level of theory and the experimental inhibitory activity; d Percentage of successful predictions [%];
e Standard error of estimate, in units of kcal · mol−1.

The dominant electrostatic effects appear to arise from the interaction between counter-charged
inhibitors and Arg103 residue (charges of −1 and +1, respectively). Indeed, as shown in Figure 2,
which presents the electrostatic contribution to the binding energy of each amino acid residue,
Arg103–inhibitor interaction has the major impact on the total E(10)

EL energy. Compared to Arg103, the
remaining residues are of minor contribution. All inhibitors are directed towards Arg103 residue with
their common –COOH group. Thus, any positional inaccuracy of the docked compounds related to
Arg103 residue could mask the subtle interactions with other residues.

In general, more potent inhibitors are characterized by higher absolute values of the interaction
energy (Table 2). To assess the relationship between the total binding energy and the inhibitory activity,
interaction energy terms evaluated within HVPT energy decomposition scheme were correlated with
pIC50 values established experimentally [13]. It can be seen in Table 2 that the interaction energy results
computed at the electrostatic and MP2 levels of theory are comparable in terms of the correlation with
the experimental inhibitory activity (R = −0.65 and −0.69, respectively). Correlation coefficient of the
multipole electrostatic model of inhibitory activity is slightly lower (R = −0.63), but the values of the
statistical predictor Npred (the success rate of prediction of relative affinities, explained further in the
Materials and Methods section) are comparable for all three levels of theory and remain within the
range between 75.0% (E(10)

EL,MTP, EMP2) and 76.9% (E(10)
EL ). The first order Heitler–London energy (E(10))

is characterized by the weakest relationship with the experimental inhibitory activity (R = −0.44,
Table 2), which is due to the repulsive E(10)

EX term of the interaction energy. Apparently, the short-range
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exchange term of the interaction energy has contributed to the greatest extent to the binding of
inhibitors with higher affinity to the EphA2 LBD, resulting in the drop of the R value at the E(10)

level of theory. It has already been observed for other complexes [29,34] that structures obtained
with empirical docking protocols and further evaluated with ab initio methods appear to suffer from
the presence of artificially shortened intermolecular distances. Due to the sensitivity of short-range
interaction energy components to any structural deficiencies, long-range binding energy terms seem to
be more suitable for the determination of the relative ligand binging affinities [41]. Thus, the following
ESCF level of theory, which accounts for short-range delocalization contribution (E(R0)

DEL), is only slightly
improved compared to E(10) in terms of the correlation (R = −0.55, Table 2). Nevertheless, only
the introduction of the correlation term E(2)

CORR, that is present in EMP2 energy, is able to recover
the predictive abilities of the inhibitory activity model, as the corresponding correlation coefficient
amounts to −0.69. Similarly to values of the Pearson correlation coefficient, Npred values associated
with E(10) and ESCF are also lower compared to the statistical outcome obtained for the remaining
levels of theory.
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Figure 2. Contribution of EphA2 amino acid residues to the EphA2-inhibitor binding energy

represented by the electrostatic term, E(10)
EL .

Among all presented levels of theory, E(10)
EL,MTP + EDas model offers the best performance

(R = −0.72 or R2 = 0.52, Npred = 77.9%). Reasonable agreement with experimental binding potency

yielded by E(10)
EL,MTP + EDas model indicates that accounting only for long-range interaction energy

terms could compete with the computationally expensive MP2 level of theory. Still, its predictive
abilities for EphA2-ephrin A1 inhibitors appear to be rather limited. Therefore, the impact of solvation
was further analyzed to check whether it might be significant in this particular system.

2.2. Solvation Energy of Inhibitors

PPI contact surfaces are large [42], and the targeted EphA2 receptor fits into this description.
Therefore, with a small molecule inhibitor bound, the EphA2 binding site remains relatively solvent
exposed. As a result, solvation effects could possibly affect the interaction energy and influence the
correlation between the latter and the experimental binding affinities. On the other hand, in the case of
inhibition of another PPI system, i.e., menin-MLL complex [35], the nonempirical model accounting
for the gas phase interaction only was sufficient to reproduce the experimental data. This could arise
from the fact that substantially more amino acid residues surround menin ligands than in the case of
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EphA2 receptor. To determine the importance of solvation effects for binding of EphA2-ephrin A1
inhibitors, solvation free energy was calculated for all compounds analyzed herein.

The solvation free energy, ∆Gsolv, along with its electrostatic and non-electrostatic contributions
(∆Gsolv,el and ∆Gsolv,non−el , respectively), is given in Table 3 for each EphA2 inhibitor. It can be
concluded from the analysis of the correlation coefficient values provided in Table 3 that ∆Gsolv
energy values do not explicitly correlate with the experimental binding potency. Nonempirical models
of inhibitory activity applied herein operate under the assumption that the enthalpic contribution
to the binding free energy is responsible for the observed differences in ligand binding affinity.
Accordingly, applicability of the interaction energy-based nonempirical approaches is limited to the
set of ligands characterized by similar solvation free energy. Considering the suboptimal performance
of E(10)

EL,MTP + EDas model in predicting the inhibitory activity of EphA2 ligands (R = −0.72, see
Table 2), compared to more significant correlation obtained previously for, e.g., menin-MLL inhibitors
(R = −0.87 [35]), the possible influence of the solvation effects was further investigated by calculating
∆G of solvation for FAAH [33], TbPTR1 [34] and menin-MLL [35] inhibitors. In all cases, ∆Gsolv is
calculated at the MP2 level of theory, but the basis sets used depend on the system (FAAH: 6-31G(d),
menin-MLL: 6-31G(d), TbPTR1: 6-311G(d) with diffuse functions on S and P orbitals of chlorine atoms;
the choice of basis set was made to match the remaining ab initio interaction energy calculations
performed for each of these systems). The solvation free energies of FAAH, TbPTR1 and menin-MLL
inhibitors (22, 6, and 18 inhibitors in each system, respectively) are given in Supplementary Materials
in Tables S2–S4. Comparison of the corresponding ∆Gsolv standard deviation is provided in Table 4 for
all abovementioned inhibitors.

Table 3. Solvation free energy (∆Gsolv) of inhibitors of EphA2-ephrin A1 interaction with its electrostatic,
∆Gsolv,el , and non-electrostatic, ∆Gsolv,non−el , contributions a.

Inhibitor pIC50
b ∆Gsolv ∆Gsolv,el ∆Gsolv,non−el

20 (L-Trp) 5.69 −73.6 −81.2 7.6
16 (L-Phe) 5.18 −66.4 −73.5 7.2
17 (D-Phe) 5.12 −67.9 −75.3 7.4
7 (D-Val) 4.76 −63.2 −70.0 6.8
4 (L-Ala) 4.70 −70.9 −77.0 6.0

21 (D-Trp) 4.69 −67.5 −75.2 7.7
6 (L-Val) 4.62 −68.6 −75.5 7.0

14 (L-Met) 4.56 −69.0 −75.9 6.9
15 (D-Met) 4.56 −66.3 −73.5 7.2
5 (D-Ala) 4.51 −67.2 −73.4 6.2
8 (L-Ser) 4.48 −66.2 −72.0 5.8
2 (Gly) 4.31 −62.8 −68.1 5.3

18 (L-Tyr) 4.30 −71.7 −78.9 7.2
9 (D-Ser) 4.22 −64.2 −70.2 6.0

19 (D-Tyr) 4.00 −67.2 −74.9 7.7

R c −0.43 −0.46 0.37
a In units of kcal · mol−1; b pIC50 values are taken from [13]; c Correlation coefficient between the solvation free
energy and the experimental inhibitory activity.

Among the ligand sets presented in Table 4, EphA2-ephrin A1 inhibitors are characterized by
the largest value of standard deviation of solvation free energy (3.0 kcal · mol−1). Since the linear
relationship between interaction energy and experimental affinities assumes, among other factors,
that the solvation effects are comparable for all inhibitors within the set, this could indicate that this
expectation is not met in the case of EphA2-ephrin A1 inhibitors. Considering that PCM results can be
obtained easily, ∆Gsolv standard deviation could be used as an initial predictor of the applicability of
E(10)

EL,MTP + EDas model.
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Table 4. Performance of EMP2 and E(10)
EL,MTP + EDas models and differences in ligand solvation free

energy for EphA2-ephrin A1, menin-MLL [35], FAAH [33], and TbPTR1 [34] inhibitors.

EphA2-Ephrin A1 Menin-MLL FAAH TbPTR1

RMP2
a −0.69 −0.55 −0.83 −0.89

R
E(10)

EL,MTP+EDas

b −0.72 −0.87 −0.67 −0.96

SD c 3.0 2.5 1.5 1.1
a Correlation coefficient between the energy obtained at MP2 level of theory and the experimental inhibitory activity;
b Correlation coefficient between the energy obtained with E(10)

EL,MTP + EDas model and the experimental inhibitory

activity; c ∆Gsolv standard deviation within a given set of inhibitors. In units of kcal · mol−1.

Compared to FAAH and TbPTR1 ligand sets, characterized by significantly lower values of ∆Gsolv
standard deviation (Table 4), EMP2 model provides less accurate inhibitory activity predictions in the
case of both EphA2-ephrin A1 and menin-MLL systems. On the other hand, the best performing
E(10)

EL,MTP + EDas model is not able to predict the EphA2-ephrin A1 inhibitory activity to the extent
observed for menin-MLL or TbPTR1 inhibitors. Therefore, it seemed interesting if omitting the
inhibitors that differ the most in terms of ∆Gsolv values (compounds 20, 7, 2 and 18, all marked in white
in Figure 3) would improve the results. The standard deviation of solvation free energy associated
with the resulting reduced set of EphA2 inhibitors is equal to 1.8 kcal · mol−1. The correlation
coefficients obtained for the full and reduced ligand sets are compared in Figure 4 for E(10)

EL,MTP, EMP2,

and E(10)
EL,MTP + EDas models. The corresponding correlation coefficients and Npred values for all the

nonempirical models of inhibitory activity, as applied to the full and reduced ligands sets, are provided
in the Supplementary Materials (Table S5). Indeed, the reduced set of EphA2 inhibitors, obtained by
selecting the compounds with essentially similar solvation free energies (Figure 3) features improved
values of correlation coefficients. In particular, E(10)

EL,MTP + EDas model provides the most accurate
predictions (Figure 4), as the corresponding correlation coefficient R amounts to −0.79 (R2 = 0.62).
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Figure 3. Solvation free energy of EphA2-ephA1 inhibitors. Compounds indicated in white were not
included in the reduced ligand set.
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Figure 4. Total EphA2-inhibitor interaction energy at the selected levels of theory within the full
(solid line) and reduced (dashed line) ligand sets. The reduced set of EphA2 inhibitors consists of the
compounds shown with full symbols.

Overall, selection of ligands to be excluded based on their ∆Gsolv differences is rather an arbitrary
approach, as one could iteratively select inhibitors to reach even lower standard deviation values
and, presumably, better predictive abilities of the nonempirical approach. On the other hand, a more
extensive elimination of compounds does not necessarily improve the correlation coefficient between
the given interaction energy model and the experimental binding potency. It can be seen in Figure 3
that ligands 4 and 9 feature ∆Gsolv values similar to compounds 2, 7, 18 and 20, already exluded
from the initial set due to solvation free energy differing the most in comparison with the majority
of EphA2 inhibitors considered herein. However, further limiting the size of the test set by removal
of compounds 4 and 9 results in no improvement in the correlation coefficient values (R = −0.75
and −0.76 for EMP2 and E(10)

EL,MTP + EDas, respectively), despite substantial drop in the ∆Gsolv standard
deviation equal to 1.0 kcal · mol−1. It should be noted that since the models of receptor–ligand
complexes are developed with certain approximations due to the lack of experimental structures,
they cannot be expected to provide perfect agreement with the experimental binding potency.
Therefore, the ligand elimination based on the ∆Gsolv differences also appears to be a limited approach.
Nevertheless, it provides a reasonable basis for the exclusion of the ∆Gsolv outliers with simultaneous
improvement in the performance of nonempirical models applied herein.

2.3. Empirical Evaluation of EphA2-Ephrin A1 Inhibitors

To further evaluate the predictive potential of various empirical descriptors related to
receptor–ligand binding, Solvent Accessible Surface Area (SASA) and Molecular Hydrophobicity
Potential (MHP) were calculated for each EphA2-ephrin A1 inhibitor. Both lipophilic (SL/L)
and hydrophilic match surfaces (SH/H) obtained with MHP calculation could help to assess
the hydrophobic/hydrophilic complementarity of the analyzed ligands to the receptor binding
site, which is based on the surface area of favorable (hydrophilic-hydrophilic) and unfavorable
(hydrophilic-hydrophobic) contacts [43]. A number of scoring functions were also used for
comparison, namely LigScore1 [44], PLP2 [45,46], Jain [47], PMF [48], PMF04 [49], Ludi1 [50], and
Ludi3 [51] (available in Discovery Studio 2017 [52]), GoldScore, ChemScore and ASP (implemented in
GOLD 4.0 program [53]), AutoDock Vina [54], CHEMPLP (PLANTS program [55]), and Glide SP [56].
Correlation coefficients associated with all these empirical approaches are compared in Figure 5 for
both full and reduced ligand sets. The numerical data reflecting each empirical score obtained for
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EphA2 inhibitors alongwith the corresponding correlation coefficients and Npred values are provided
in Table S6 in Supplementary Materials.
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Figure 5. Pearson correlation coefficients obtained for the empirical scoring methods and E(10)
EL,MTP + EDas

model applied to the full (R f ) and reduced (Rr) ligand sets.

The best performing empirical descriptors for both full and reduced ligand sets include LigScore1,
Jain, Ludi3, GlideSP and Ludi1 (Figure 5). In fact, the related correlation coefficients are comparable
with the corresponding value characterizing E(10)

EL,MTP + EDas model, e.g., in the case of full ligand set

R = −0.71 (R2 = 0.50) and −0.72 (R2 = 0.52) for LigScore1 and E(10)
EL,MTP + EDas, respectively (see

Table S6 in Supplementary Materials). Nevertheless, the majority of the analyzed empirical scoring
functions yield unsatisfactory results and are outperformed by most of the nonempirical models,
including E(10)

EL,MTP + EDas. As it has been pointed out by Li et al. [57], SASA appears to perform better
as a scoring method than a number of popular scoring functions [57,58]. Accordingly, outperforming
the SASA predictions might be viewed as a necessary condition, allowing for distinguishing between
the scoring functions providing reasonable results and those failing to reflect the experimental
binding affinity. In this particular case, most of the scoring approaches presented in Figure 5 seem to
pass this test; however, only some of the empirical approaches, and E(10)

EL,MTP + EDas model in particular,
appear to provide at least semi-quantitative agreement with the experimental inhibitory activity.

In contrast to the theoretical models considered herein (Table S5 in Supplementary Materials),
the correlation between the empirical scoring functions and experimental inhibitory activity values
do not always improve when the reduced model is considered (Figure 5). This could arise from the
fact that solvation effects might be implicitly included in the empirical description by parametrization
performed with experimental binding potency. Depending on the ability of a given scoring function
to account for the influence of solvent, limiting the test ligand set to the inhibitors featuring similar
solvation energy might either decrease the performance of the method (PLP2 and PMF04) or improve
the predictions, as can be seen for (e.g., LigScore1 and Jain; see Figure 5).

It seemed interesting to check whether there is some consistency in top scoring empirical functions
throughout the systems tested so far in our group. Since some scoring functions implemented in
Discovery Studio have been used also in the case of FAAH [33] and menin-MLL [35], comparison
was made for these methods. The performance of LigScore1, PLP2, Jain, PMF, and Ludi1, described
by correlation coefficients and percentage of successful predictions (Npred) is presented in Table 5 for
FAAH, menin-MLL and EphA2-ephA1 systems. In the latter case, comparison was made based on the
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results associated with the reduced set of ligands featuring similar ∆Gsolv values. As demonstrated in
Tables S5 and S6 in Supplementary Materials, selecting EphA2 inhibitors with relatively similar values
of solvation free energy improves the performance of both nonempirical E(10)

EL,MTP + EDas model and
most of the scoring functions included in this comparison.

Table 5. Performance of empirical scoring for FAAH, menin-MLL and EphA2-ephrin A1 systems.

The results obtained for nonempirical E(10)
EL,MTP + EDas model are provided for comparison.

Scoring Function FAAH a menin-MLL b EphA2-ephrin A1 c

R d Npred
e R Npred R Npred

LigScore1 +0.25 44.6 −0.81 75.2 −0.80 79.6
Jain −0.48 71.4 −0.80 77.8 −0.77 83.3

PLP2 −0.51 65.8 −0.79 80.4 −0.40 72.2
Ludi1 −0.62 73.2 −0.40 58.8 −0.71 75.9
PMF −0.72 77.1 +0.24 41.2 −0.27 66.7

E(10)
EL,MTP + EDas −0.67 74.9 −0.87 81.1 −0.79 79.6

a The results are taken from [33]; b The results are taken from [35]; c The results refer to the reduced set of EphA2

inhibitors; d Correlation coefficient between the score obtained with a given empirical function or E(10)
EL,MTP + EDas

energy and the experimental inhibitory activity; e Percentage of successful predictions [%].

It can be seen in Table 5 that both LigScore1 and Jain provide the best prediction for menin-MLL
and EphA2-ephrin A1 systems. On the contrary, the performance of these scoring functions is
unsatisfactory in the case of FAAH inhibitors. Entirely different predictive abilities seem to be
associated with PMF function, that performs the best for FAAH system, yet it fails in the case
of both menin and EphA2 inhibitors. As for the remaning empirical scoring functions compared
herein, PLP2 appears to provide valid predictions only for menin-MLL system, whereas Ludi1 yields
rather satisfactory agreement with the experimental data for both FAAH and EphA2 inhibitors.
The interactions in menin-MLL [35] and EphA2-ephrin A1 system are predominantly electrostatic
in nature, and it seems that LigScore1 or Jain functions might be better suited in such a case.
On the other hand, for dispersion-dominated systems like FAAH [33], PMF could be a better choice.
Nevertheless, the performance of E(10)

EL,MTP + EDas model is comparable (or superior, as demonstrated
in the case of menin-MLL system) to the best empirical scoring functions in each system analyzed so far.
Considering that the physical nature of interactions for novel receptor–ligand complexes can hardly
be determined without time-consuming ab initio calculations and the resulting choice of a reliable
empirical scoring function might not be clear, the nonempirical E(10)

EL,MTP + EDas model appears to be a
preferable method, capable of providing the predictions with a reasonable quality at the computational
cost comparable to that of empirical scoring functions.

3. Materials and Methods

3.1. Preparation of the Structures

From the LCA-based structures reported by Incerti et al. [13], all active α-amino acid LCA
conjugates were selected. An LCA compound was not included in this analysis on account of the likely
multiple binding modes within EphA2 [14]. In contrast, LCA amino acid conjugates studied herein
presumably possess a single binding mode due to the interaction between the carboxylate group and
Arg103 residue of EphA2 receptor. The structures of the selected inhibitors and the corresponding
pIC50 vales (taken from [13]) are given in Table 1.

The geometries of EphA2-inhibitor complexes, obtained from molecular docking simulation [13],
were provided by Incerti et al. [13]. Since the goal of the analysis was to investigate the influence of
amino acid substituent on the activity of the inhibitors, the common LCA scaffold, positioned similarly
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in all complexes, was not included in the analysis. In particular, the inhibitors were cut as indicated by
the red line in the scaffold representation in Table 1.

To obtain more reliable positions of amino acid residues, all EphA2-inhibitor complexes were
solvated with the TIP3 water model [59] and re-optimized in the CHARMM program [60] (version c36b1,
Harvard University, Cambridge, MA, USA). Hydrogen atoms were built with HBUILD command.
Both CHARMM General Force Field v. 2b7 [61] and CHARMM22 All-Hydrogen Force Field [62–64]
parameter files were used. Missing parameters for inhibitor structures were generated with CGenFF
interface at http://cgenff.paramchem.org [61,65–67] (interface version 1.0.0). LCA scaffold and all
amino acid residues further than 4 Å from each inhibitor were kept frozen throughout 1000 steps of
steepest descent followed by conjugate gradient optimization until a root mean squared deviation of
the gradient (GRMS) of 0.01 kcal · mol−1·Å was reached.

The model of EphA2 binding site included all residues in the vicinity of 4 Å of the interchangeable
fragment of the inhibitors, i.e., Cys70, Cys188, Phe108, Arg103, Val72 and Met73 (Figure 1).
Dangling bonds resulting from cutting the amino acid residues from protein structure were filled with
hydrogen atoms minimized in the Schrödinger Maestro [68] program (Maestro version 9.3, Schrödinger,
LLC, New York, NY, USA) using OPLS 2005 force field [69].

3.2. Interaction Energy Calculations

Interaction energy between EphA2 receptor and each inhibitor was calculated within Hybrid
Variation–Perturbation Theory (HVPT) [39,40] decomposition scheme as the sum of interaction energy
components obtained for each residue-inhibitor dimer. Counterpoise correction was applied in
the treatment of the basis set superposition error [70]. The calculations were carried out with a
modified version [40] of GAMESS program [71] using 6-311+G(d) basis set [72–74]. HVPT introduces
the partitioning of the Møller–Plesset second-order interaction energy (EMP2) into the multipole
electrostatic (E(10)

EL,MTP), penetration (E(10)
EL,PEN), exchange (E(10)

EX ), delocalization (E(R0)
DEL) and correlation

(E(2)
CORR) terms:

EMP2 =

R−n︷ ︸︸ ︷
E(10)

EL,MTP +

exp(−γR)︷ ︸︸ ︷
E(10)

EL,PEN + E(10)
EX + E(R0)

DEL +

R−n︷ ︸︸ ︷
E(2)

CORR

O(N5) ︸ ︷︷ ︸
EMP2

O(N4) ︸ ︷︷ ︸
ESCF

O(N4) ︸ ︷︷ ︸
E(10)

O(N4) ︸ ︷︷ ︸
E(10)

EL

O(A2) ︸ ︷︷ ︸
E(10)

EL,MTP

,

(1)

which could be divided into the long- and short-range contributions that vary with the intermolecular
distance R as R−n and exp(−γR), respectively. E(10)

EL,MTP term from Equation (1) is the electrostatic
multipole component of the binding energy. Herein, it was estimated from Cumulative Atomic
Multipole Moment (CAMM) expansion (implemented in GAMESS), truncated at the R−4 term.
The first-order electrostatic energy (E(10)

EL ) is obtained by adding the penetration term, E(10)
EL,PEN ,

to the E(10)
EL,MTP energy. The first-order Heitler–London energy, E(10), is the sum of first-order

electrostatic energy and the exchange component E(10)
EX . The higher order delocalization energy,

http://cgenff.paramchem.org


Molecules 2018, 23, 1688 13 of 19

E(R0)
DEL, comprising classical induction and charge transfer terms, is defined as the difference between

the counterpoise-corrected self-consistent field (SCF) variational energy, ESCF, and the first-order
Heitler–London energy, E(10). The correlation term E(2)

CORR is calculated as the difference of the

second-order Møller–Plesset interaction energy, EMP2, and converged SCF energy, ESCF. E(2)
CORR consists

mostly of intramolecular correlation contributions, dispersion and exchange-dispersion interaction
energy terms. The zero value of the second superscript accompanying some energy terms in
Equation (1) represents uncorrelated interaction energy contributions. O(X) in Equation (1) denotes
the scaling of the computational cost, where N and A indicate the number of atomic orbitals and
atoms, respectively.

On account of the considerable computational cost of E(2)
CORR term, containing the dispersion

contribution, atom–atom potential function EDas [31,32] was calculated to obtain the approximate
dispersion energy at a far more affordable computational expense. In contrast to E(2)

CORR, computation
scaling with at least the fifth power of the number of atomic orbitals, O(N5), EDas calculation scales
with the square number of atoms, O(A2).

Among amino acid residues in the close proximity of a varying fragment of the LCA derivatives,
only Arg103 residue is not neutral, bearing +1 charge. Except for Arg103 residue and two polar
cysteine residues, linked by disulfide bond, the remaining residues in the model of EphA2 receptor are
nonpolar. The negatively charged (−1) ligands could be considered solvent exposed, as their large
fragments face water environment. Since Cys70 and Cys188 residues constitute a disulfide bridge,
these residues were considered as Cys70-Cys188 dimer interacting with inhibitors. Similarly, the
subsequent Val72 and Met73 residues were not separated but treated as Val72-Met73 dimer to interact
with all inhibitors. The remaining residues (Arg103 and Phe108) were included separately.

3.3. Solvation Energy Calculations

∆Gsolv for each inhibitor was computed at the MP2/6-311+G(d) level of theory in Gaussian09 [75].
The calculations involved Polarizable Continuum Model (PCM) using the integral equation formalism
variant (IEFPCM) [76–78] and ExternalIteration [79,80], DoVacuum, and SMD [81] options.

3.4. Empirical Scoring

Empirical scoring with a variety of methods was performed for EphA2-inhibitor complexes.
As scoring in the presence of water molecules appears to have little influence on the quality
of predictions [82], solvent molecules were removed from protein–ligand complexes. Solvent
Accessible Surface Area (SASA) [83,84] of each inhibitor was calculated in VMD [85,86] (http:
//www.ks.uiuc.edu/Research/vmd/) with SASA.TCL script [87] and the sphere radius set to 1.4 Å.
Molecular Hydrophobicity Potential (MHP) was calculated in the PLATINUM program (version 1.0,
Laboratory of Biomolecular Modeling, Russian Academy of Sciences, Moscow, Russia) [43]. GoldScore,
ChemScore, and Astex Statistical Potential (ASP) were obtained using GOLD 4.0 (The Cambridge
Crystallographic Data Centre, Cambridge, United Kingdom) [53] with a spherical grid centered at
the alpha carbon of Arg103, comprising amino acid residues within 10 Å radius from the point of
origin. PLANTS [55] docking program with its CHEMPLP scoring function was employed with a 10 Å
radius sphere. PyMOL [88] and PyMOL AutoDock/Vina plugin [89] were used for preparation of
the receptor and inhibitors for scoring in AutoDock Vina (version 1.1.2, Molecular Graphics Lab at The
Scripps Research Institute, La Jolla, CA, USA). The latter was carried out with 22.5 Å cubic grid. Glide
SP [56] (standard precision), implemented in Schrödinger Glide [90], was applied with a 15 Å grid
centered on the ligand. The following scoring functions implemented in Discovery Studio 2017 [52]
were used: LigScore1 [44], Piecewise Linear Potential, PLP2 [45,46], Jain [47], Potential of Mean Force,
PMF [48] and PMF04 [49], Ludi1 [50] and Ludi3 [51]. In all cases, the scoring performed with Discovery
Studio 2017 (Dassault Systèmes BIOVIA, San Diego, CA, USA) suite was carried out with a 10 Å radius
sphere centered on the ligand. Calculations performed with AutoDock Vina, PLANTS, GOLD, Glide,

http://www.ks.uiuc.edu/Research/vmd/
http://www.ks.uiuc.edu/Research/vmd/
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and Discovery Studio 2017 involved only scoring of the available compounds’ poses to avoid their
re-docking, as this would affect the results. While using all these docking programs, the full protein
structures were employed. In each case, standard settings were employed, as further described in
Supplementary Materials.

3.5. Evaluation of the Results

To assess the performance of each scoring model, the Pearson correlation coefficients were
calculated with respect to the experimentally determined inhibitory activity values [13]. The scoring
functions with higher score indicating the greater binding potency were assigned the opposite values
of the calculated correlation coefficient to facilitate the comparison with the non-empirical interaction
energy results, assigning lower binding energy values to more potent inhibitors. Another performance
measure applied herein involved the statistical predictor Npred, constituting the success rate of
prediction of relative affinities, and defined as the percentage of concordant pairs with relative stability
of the same sign as in the reference experimentally measured activities, evaluated among all pairs
of inhibitors [91]. Here, a special case has occurred as two of the examined inhibitors were reported
with an identical experimental affinity (pIC50 = 4.56 for compounds 14 (L-Met) and 15 (D-Met) [13]).
This particular pair of inhibitors was not taken into account while evaluating Npred values.

4. Conclusions

The binding of inhibitors of EphA2-ephrin A1 system appears to be dominated by electrostatic
interactions. Interaction due to the positively charged Arg103 residue constitutes the major
contribution to the interaction energy between the receptor and the negatively charged inhibitors.
Nevertheless, accounting for dispersion improves the predictive abilities of the theoretical models
applied herein. Among the proposed nonempirical approaches characterizing EphA2-ephrin A1
inhibition, E(10)

EL,MTP + EDas model, comprising solely long-range multipole electrostatic and
approximate dispersion interactions, appears to be the best performing (R = −0.72, Npred = 77.9%) in
terms of the agreement with the experimental data.

Furthermore, solvation effects are probably significant in the case of binding of the presented
class of EphA2 inhibitors. Rather limited predictive abilities of E(10)

EL,MTP + EDas model could be
related to a relatively large standard deviation of solvation free energy of EphA2-ephrin A1 inhibitors.
Compared to ∆Gsolv standard deviation obtained for ligands in other systems previously studied in our
group, this value is higher and thus could indicate the limited applicability of E(10)

EL,MTP + EDas model
for this particular case. In fact, once the set of EphA2 inhibitors is restricted to the ligands featuring
essentially similar solvation free energy (i.e., without the compounds 2, 7, 18, 20), the correlation of the
theoretical models with the experimental results is improved, with the performance of E(10)

EL,MTP + EDas
model characterized by R = −0.79 and Npred = 79.6%.

Despite the limitations discussed above, E(10)
EL,MTP + EDas model is able to outperform essentially

all of the empirical descriptors tested herein, including the scoring functions implemented in
popular docking programs, such as GOLD, AutoDock Vina or PLANTS. Among the empirical
approaches tested herein for EphA2 inhibitors, the only scoring functions that perform comparably to
E(10)

EL,MTP + EDas model in this particular case involve LigScore1, Jain and Ludi. However, the scoring
performance of these functions is hardly general, as it was not satisfactory in some of the systems
studied in our group [33,35]. Based on the comparison encompassing FAAH [33], menin-MLL [35]
and EphA2-ephrin A1 cases, it could be tentatively stated that LigScore1 or Jain functions might
be better suited for systems with predominant electrostatic interactions (e.g., menin-MLL and
EphA2-ephrin A1). In contrast, PMF is probably more appropriate for dispersion-dominated systems
(FAAH). Irrespectively of the physical nature of the receptor–ligand binding, the nonempirical
E(10)

EL,MTP + EDas model yields the inhibitory activity predictions comparable or outperforming the best
empirical scoring function in each of these cases, at similar computational cost. While more tests are
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required to validate the usefulness and general applicability of E(10)
EL,MTP + EDas model, it appears to

constitute an advantageous alternative to commonly used empirical scoring approaches.

Supplementary Materials: Supplementary materials are available online.
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