276 research outputs found

    Absolute identification by relative judgment

    Get PDF
    In unidimensional absolute identification tasks, participants identify stimuli that vary along a single dimension. Performance is surprisingly poor compared with discrimination of the same stimuli. Existing models assume that identification is achieved using long-term representations of absolute magnitudes. The authors propose an alternative relative judgment model (RJM) in which the elemental perceptual units are representations of the differences between current and previous stimuli. These differences are used, together with the previous feedback, to respond. Without using long-term representations of absolute magnitudes, the RJM accounts for (a) information transmission limits, (b) bowed serial position effects, and (c) sequential effects, where responses are biased toward immediately preceding stimuli but away from more distant stimuli (assimilation and contrast)

    Sequence effects in the categorization of tones varying in frequency

    Get PDF
    In contrast to exemplar and decision-bound categorization models, the memory and contrast models described here do not assume that long-term representations of stimulus magnitudes are available. Instead, stimuli are assumed to be categorized using only their differences from a few recent stimuli. To test this alternative, the authors examined sequential effects in a binary categorization of 10 tones varying in frequency. Stimuli up to 2 trials back in the sequence had a significant effect on the response to the current stimulus. The effects of previous stimuli interacted with one another. A memory and contrast model, according to which only ordinal information about the differences between the current stimulus and recent preceding stimuli is used, best accounted for these dat

    The Apparent Requirement for Protein Synthesis during G2 Phase Is due to Checkpoint Activation

    Get PDF
    Protein synthesis inhibitors have long been known to prevent G2 phase cells from entering mitosis. Lockhead et al. demonstrate that this G2 arrest is due to the activation of p38 MAPK, not insufficient protein synthesis, arguing that protein synthesis in G2 phase is not absolutely required for mitotic entry

    Prospect relativity: how choice options influence decision under risk.

    Get PDF
    In many theories of decision under risk (e.g., expected utility theory, rank-dependent utility theory, and prospect theory), the utility of a prospect is independent of other options in the choice set. The experiments presented here show a large effect of the available options, suggesting instead that prospects are valued relative to one another. The judged certainty equivalent for a prospect is strongly influenced by the options available. Similarly, the selection of a preferred prospect is strongly influenced by the prospects available. Alternative theories of decision under risk (e.g., the stochastic difference model, multialternative decision field theory, and range frequency theory), where prospects are valued relative to one another, can provide an account of these context effects

    Relative judgement is relatively difficult: evidence against the role of relative judgement in absolute identification

    Get PDF
    A variety of processes have been put forward to explain absolute identification performance. One difference between current models of absolute identification is the extent to which the task involves accessing stored representations in long-term memory (e.g. exemplars in memory, Kent & Lamberts, Journal of Experimental Psychology: Learning Memory and Cognition, 31, 289–305, 2005) or relative judgement (comparison of the current stimulus to the stimulus on the previous trial, Stewart, Brown & Chater, Psychological Review, 112, 881–911, 2005). In two experiments we explored this by tapping into these processes. In Experiment 1 participants completed an absolute identification task using eight line lengths whereby a single stimulus was presented on each trial for identification. They also completed a matching task aimed at mirroring exemplar comparison in which eight line lengths were presented in a circular array and the task was to report which of these matched a target presented centrally. Experiment 2 was a relative judgement task and was similar to Experiment 1 except that the task was to report the difference (jump-size) between the current stimulus and that on the previous trial. The absolute identification and matching data showed clear similarities (faster and more accurate responding for stimuli near the edges of the range and similar stimulus-response confusions). In contrast, relative judgment performance was poor suggesting relative judgement is not straightforward. Moreover, performance as a function of jump-size differed considerably between the relative judgement and absolute identification tasks. Similarly, in the relative judgement task, predicting correct stimulus identification based on successful relative judgement yielded the reverse pattern of performance observed in the absolute identification task. Overall, the data suggest that relative judgement does not underlie absolute identification and that the task is more likely reliant on an exemplar comparison process

    The tubulin repertoire of C. elegans sensory neurons and its context-dependent role in process outgrowth

    Get PDF
    Microtubules contribute to many cellular processes, including transport, signaling, and chromosome separation during cell division (Kapitein and Hoogenraad, 2015). They are comprised of αβ‐tubulin heterodimers arranged into linear protofilaments and assembled into tubes. Eukaryotes express multiple tubulin isoforms (Gogonea et al., 1999), and there has been a longstanding debate as to whether the isoforms are redundant or perform specialized roles as part of a tubulin code (Fulton and Simpson, 1976). Here, we use the well‐characterized touch receptor neurons (TRNs) of Caenorhabditis elegans to investigate this question, through genetic dissection of process outgrowth both in vivo and in vitro. With single‐cell RNA-seq, we compare transcription profiles for TRNs with those of two other sensory neurons, and present evidence that each sensory neuron expresses a distinct palette of tubulin genes. In the TRNs, we analyze process outgrowth and show that four tubulins (tba‐1, tba‐2, tbb‐1, and tbb‐2) function partially or fully redundantly, while two others (mec‐7 and mec‐12) perform specialized, context‐dependent roles. Our findings support a model in which sensory neurons express overlapping subsets of tubulin genes whose functional redundancy varies between cell types and in vivo and in vitro contexts

    Phosphorylation and modulation of hyperpolarization-activated HCN4 channels by protein kinase A in the mouse sinoatrial node

    Get PDF
    The sympathetic nervous system increases heart rate by activating β adrenergic receptors and increasing cAMP levels in myocytes in the sinoatrial node. The molecular basis for this response is not well understood; however, the cardiac funny current (If) is thought to be among the end effectors for cAMP signaling in sinoatrial myocytes. If is produced by hyperpolarization-activated cyclic nucleotide–sensitive (HCN4) channels, which can be potentiated by direct binding of cAMP to a conserved cyclic nucleotide binding domain in the C terminus of the channels. β adrenergic regulation of If in the sinoatrial node is thought to occur via this direct binding mechanism, independent of phosphorylation. Here, we have investigated whether the cAMP-activated protein kinase (PKA) can also regulate sinoatrial HCN4 channels. We found that inhibition of PKA significantly reduced the ability of β adrenergic agonists to shift the voltage dependence of If in isolated sinoatrial myocytes from mice. PKA also shifted the voltage dependence of activation to more positive potentials for heterologously expressed HCN4 channels. In vitro phosphorylation assays and mass spectrometry revealed that PKA can directly phosphorylate at least 13 sites on HCN4, including at least three residues in the N terminus and at least 10 in the C terminus. Functional analysis of truncated and alanine-substituted HCN4 channels identified a PKA regulatory site in the distal C terminus of HCN4, which is required for PKA modulation of If. Collectively, these data show that native and expressed HCN4 channels can be regulated by PKA, and raise the possibility that this mechanism could contribute to sympathetic regulation of heart rate
    • …
    corecore