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Abstract

In contrast to exemplar and decision bound categorization models, the memory and contrast

models described here do not assume that long-term representations of stimulus magnitudes

are available. Instead, stimuli are assumed to be categorized using only their differences from a

few recent stimuli. To test this alternative, sequential effects were examined in a binary

categorization of 10 tones varying in frequency. Stimuli up to two trials back in the sequence

had a significant effect on the response to the current stimulus. Further, the effects of previous

stimuli interacted with one another. A memory and contrast model, according to which only

ordinal information about the differences between the current stimulus and recent preceding

stimuli is utilized, best accounted for these data. 
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Sequence Effects in the Categorization of Tones Varying in Frequency

Exemplar models (e.g., Medin & Schaffer, 1978; Nosofsky, 1986) and decision-bound

models (e.g., Ashby & Townsend, 1986) are arguably the most successful models of

perceptual categorization. These models have a common representational assumption: They

assume that stimuli can be represented as points or probability distributions within a

multidimensional psychological space. Identification and categorization decisions are then

based on these representations. Implicit in this assumption is the notion that the absolute

magnitudes (on various psychological dimensions, e.g., loudness, brightness, size) of

previously encountered stimuli are available when classifying new stimuli.

There is, however, some evidence to suggest that absolute magnitudes may be

unavailable in the identification and classification of simple perceptual stimuli. For example, in

a series of classic experiments by Garner (1954), participants' judgments of whether

comparison tones were more or less than half as loud as a given reference tone were

completely determined by the range of the comparison tones (see also Helson, 1964). Baird,

Green, and Luce (1980) demonstrated that two-thirds of the variability in loudness estimates

was explained by the variability in the previous estimate when loudnesses were similar,

suggesting that the previous loudness is used as a reference point. Such context effects should

not be evident if participants did have access to absolute magnitude information. Laming

(1997) provided extensive discussion of these and other similar findings

Stewart, Brown, and Chater (2002) suggested that, if absolute magnitude information

is not readily accessible, relative magnitude information might instead provide the basis for

categorization. Indeed, in the absence of absolute magnitude information the only possible

strategy, apart from guessing, is to classify exemplars on the basis of their difference from

previous exemplars. Stewart et al. proposed a memory and contrast (hereafter MAC) model of

binary categorization, according to which a new exemplar is classified into the same category

as an immediately preceding exemplar if it is similar to that exemplar. Alternatively, if the
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preceding and current stimuli differ sufficiently, the current exemplar is classified into the

alternative category. 

The Category Contrast Effect

Stewart et al. (2002) provided some experimental evidence that discriminated between

their MAC account and standard exemplar accounts. The paradigm used was a unidimensional

binary categorization of ten stimuli, where stimuli of one category took low values on the

dimension and stimuli of the other category took high values (see Figure 1). Stewart et al.

found that classification of a borderline stimulus (e.g., 5) was more accurate when

presentation of the borderline stimulus was preceded by a distant member of the opposite

category (e.g., 10) than when it was preceded by a distant member of the same category (e.g.

1). They called this effect the category contrast effect. 

Stewart et al. (2002) showed that existing exemplar models predict the opposite result.

In exemplar models the probability of responding with a given category label is given by the

summed similarity of a target exemplar to members of that category, divided by the summed

similarity of the target exemplar to members of all competing categories (i.e., in accordance

with Luce's, 1959, choice model). If the plausible assumption that stimuli on recent trials are

weighted more heavily than those on less recent trials is made (e.g., Nosofsky & Palmeri,

1997), the effect of the immediately preceding exemplar, no matter how dissimilar to the

current exemplar, is to increase the summed similarity of the current exemplar to the previous

exemplar's category. Thus, according to an exemplar model, a borderline stimulus should be

classified more accurately after a distant member of the same category compared to a distant

member of the opposite category - the opposite of the category contrast effect. 

A MAC strategy does, however, predict the category contrast effect. The similarity

between a borderline stimulus and a distant stimulus, either from the same category or the

opposite category, is low. Thus, when a borderline stimulus is preceded by a distant stimulus

the memory and contrast strategy predicts responding with the opposite category label to that
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of the previous stimulus: When the previous stimulus is from the same category, accuracy for

responding to the current stimulus will be low, and when the previous stimulus is from the

opposite category accuracy for responding to the current stimulus will be high - consistent

with the category contrast effect.

Sequential Effects

The purpose of this article is to examine how a MAC strategy might be generalized to

include information from recent stimuli other than the preceding stimulus. There is good

evidence to suggest that sequential effects in categorization and related tasks are not limited to

the immediately preceding stimulus. Stimuli further back in the sequence also have an effect.

For example, in absolute identification tasks stimuli that vary along a unidimensional

psychological continuum (e.g., the loudness of a tone or the length of a line) are each

associated with a unique label. Normally labels are stimulus ranks. In identifying a current

stimulus there is a strong assimilative effect to the immediately preceding stimulus (Garner,

1953; Holland & Lockhead, 1968; Hu, 1997; Lacouture, 1997; Lockhead, 1984; Luce,

Nosofsky, Green, & Smith, 1982; Mori, 1989; Mori & Ward, 1995; Purks, Callahan, Braida,

& Durlach, 1980; Staddon, King, & Lockhead, 1980; Ward & Lockhead, 1970, 1971). In

other words, participants are systematically biased to judge the current stimulus as nearer to

the previous stimulus than it really is. The effect of stimuli further back in the sequence is the

opposite: that is, there is a contrast effect (Holland & Lockhead, 1968; Lacouture, 1997;

Ward & Lockhead, 1970, 1971). The contrast effect is smaller in magnitude, and decreases for

less recent stimuli, but can be observed for up to the previous five or six stimuli (but see

Jestead, Luce, & Green,1977, for an argument that such effects are not direct, but propagated

to the current trial through successive responses).

 Furthermore, these sequence effects are not due to drifting in responding. Petzold and

Haubensak (2001) examined sequential effects in a categorization task with five categories.

Stimuli were squares varying in size. There was a significant correlation between stimuli and
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responses up to six trials back. These correlations were compared to the expected size of

pseudo-sequential effects caused by individual participants showing a drift in their use of the

response scale across the experiment. The sequential effects were significantly greater than the

expected pseudo-sequential effects up to a lag of two for category judgments.

In summary, in psychophysical tasks there is good evidence that it is not just the

immediately preceding stimulus that affects the response on the current trial, but also stimuli

further back in the sequence too. If MAC models are to become viable models of

categorization then they must offer an account of these sequential effects. We begin by

considering how MAC models might be developed to account for the effects of many

preceding trials and not just the immediately preceding trial. We then present the predictions

of these models. Finally, we present data from a new categorization experiment and use these

data to test the models that we have proposed. 

Alternative Models

In presenting the alternative models we begin by briefly outlining the original MAC

model. We then present some motivation and discussion of the key assumptions in the models

we propose before presenting the models and their predictions. We refer to the current trial as

trial n, the previous trials as trial n-1, and the kth most recent trial as trial n-k. The physical

magnitude of the stimulus on trial n-k is denoted Xn-k, the psychological magnitude Sn-k, the

response Rn-k, and the feedback Fn-k.

The Original MAC Model

According to the original MAC model proposed by Stewart et al. (2002), participants

are assumed to base their categorization decision for Sn on Fn-1 and on the difference d

between Sn and Sn-1. In some cases the sign of the difference is sufficient to determine the

response. For example, consider the category structure in Figure 1. If Fn-1 is Category A, and

Sn-1 � Sn then Sn must also belong to Category A. This is the case whenever Sn � Sn-1 � 5 (or

when Sn � Sn-1 � 6 for Category B). When the sign of d is not sufficient to determine the
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category of the Sn, then the magnitude of d is used to generate a probability of repeating the

Fn-1 as Rn. When d is small the probability of repeating the label is high and when d is large the

probability of repeating the label is small. Originally a Gaussian function was used to relate the

distance d to the probability of responding on the current trial with the category label (i.e.,

feedback) from the previous trial. 

P �Rn=F n�1�=e�cd 2

(1)

The free parameter c determines the size of the difference required to give a change in

category label by determining how quickly the probability of repeating the previous category

label decreases as the difference between the previous and current stimuli increases. Despite

making no use of absolute magnitude information, and despite relating the current stimulus

only to the immediately preceding stimulus and feedback, such a model can do surprisingly

well, achieving, for example, around 85% correct classification performance in binary

classification of 10 stimuli (Stewart et al., 2002). 

No Long-Term Memory for Absolute Magnitudes

Consistent with the original MAC model (Stewart et al., 2002), we assume that long-

term memory traces representing the absolute magnitudes of stimulus attributes are

unavailable, or at least unused. We make this strong assumption primarily to demonstrate that

models without long-term representation of absolute magnitude information naturally predict

the sequential effects observed. This theoretical standpoint is in direct contrast to the

representational assumptions of exemplar and decision-bound models of perceptual

categorization. Thus our purpose is not to claim that absolute magnitude information is never

available or used. Rather, our aim is to show that a natural account of sequence effects in

binary categorization of unidimensional stimuli can be provided without such an assumption.

In the models that we describe below we assume that absolute magnitude information is

available for, at most, a few recent stimuli. An alternative possibility is that this absolute

magnitude information is available for only the immediately preceding stimulus, and that
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differences between the current stimuli and earlier stimuli are deduced by summing intervening

consecutive differences. We shall return to this possibility in the discussion. 

Quality of Difference Information

A key theoretical question concerns the nature of the difference information used by

participants. Stewart et al. (2002) assumed that the sign and magnitude of the difference Sn -

Sn-1 is available. (If the psychological percept of a magnitude is related to the physical

magnitude by a logarithmic transformation, as in Fechner's law, then this assumption

corresponds to assuming that only the ratio of the physical magnitudes Xn / Xn-1 is available.)

An alternative and stronger assumption is that only the sign of the difference between

successive stimuli is available, and not the magnitude of the difference. In other words,

participants are only able to make ordinal judgments, judging whether Sn is greater than,

approximately equal to, or smaller than Sn-1. Laming (1984, 1997) made a similar claim, and

suggested that two additional judgments could be made - 'much greater than' and 'much

smaller than.' Laming argued that the assumption that one can only make such judgments is

sufficient to account for many of the key phenomena in psychophysics. Here we consider both

models where only the sign information is used and models where both the sign and the

magnitude of stimulus differences are used.

In some cases, if the sign of the difference between Sn and Sn-1 is known the category of

the current stimulus can be determined from the category of the previous stimulus. Using only

the sign of the difference between stimuli might seem unlikely to lead to high levels of

performance. However, if one only has access to the sign of the difference between Sn and Sn-1

(not the magnitude) and Fn-1 then this strategy does predict a perform above chance (50%) on

random sequences of stimuli in a binary categorization with a single category bound (e.g., the

category structure in Figure 1). For large set sizes (N > 10), average accuracy is about 63%

correct, although this performance rises to 69% correct for smaller set sizes (N = 4). Here we

extend this idea: In general, for a binary categorization with a single category boundary b, we
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shall call Sn-k sign-useful whenever Sn � Sn-k < b or Sn � Sn-k > b. Note that a participant need

know only the sign of the difference between Sn and Sn-k, the feedback from trial n-k, and the

ordering of the categories on the dimension for Sn-k to be sign-useful. Knowledge of the

category bound is not necessary. 

Selection and Integration of Information from Previous Trials

A separate theoretical issue is how information from several previous trials might be

selected or combined to inform responding on trial n. One possibility is that information from

several previous trials is independently combined; a second possibility is that only some of this

information is selected and used.

The first possibility can be excluded on the grounds that it does not lead to improved

overall accuracy for any model. The argument proceeds as follows. Assume that the

proportion of correct responses on trial n is given by a weighted sum of the independent

contributions of comparisons with K previous trials:

w1f �S n�1��w2f �S n�2��...�wK f �S n�K � (2)

where wk is the weight for trial n-k, �
k=1

K

wk=1 , and f(Sn-k) is the accuracy on trial n if only

Sn-k is used. Averaging over all possible values of each previous stimulus gives an average

which reduces to 

�
S=S 1

S N

f �S � (3)

where Si is the psychological magnitude of the ith of N stimuli. This sum is independent of the

weighting used. Thus, only weighting Sn-1 produces the same overall accuracy as including

information from more previous stimuli. In other words, when the effects of information from

previous trials are independent of one another, including information from previous trials does

not increase the overall accuracy of categorization. Intuitively, this can be understood as

follows. When a given previous stimulus is either particularly helpful (or particularly
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unhelpful) in classifying the current stimulus, the advantage (or disadvantage) it gives will be

diluted when combined with information from other previous stimuli.

The preceding argument rules out any model where the weights allocated to

information from previous trials are independent from the stimuli on those trials. An

alternative possibility is that the attention paid to a given previous trial will depend on the

usefulness of that previous trial relative to other previous trials. For example, comparison

might be made to Sn-3 when and only when comparisons to Sn-1 and Sn-2 are not useful. Some

evidence consistent with this possibility is provided by Petzold and Haubensak (2001). In their

examination of sequential effects described above they obtained an interaction between the

effects of the two previous trials. Specifically, the correlation between Rn and Rn-1 was lower

when Sn-2's magnitude was located in between Sn and Sn-1's. Similarly, the correlation between

Rn and Rn-2 was lower when Sn-1's magnitude was located between Sn and Sn-2's. This suggests

that when Sn-1 is nearer Sn than Sn-2, Sn-2 is relied on less and when Sn-2 is nearer Sn than Sn-1, Sn-1

is relied on less. 

In the light of these considerations, in the models we present below we assume that

there is a context-dependent selection of the use of stimulus information from particular

previous trials.

Availability of Previous Stimuli

In extending the MAC account, we assume that each previous stimulus Sn-k (k > 0) and

corresponding category label can be utilized in categorizing the current stimulus Sn with

probability pn-k. For simplicity, these events are assumed to be independent of one another

(although this is not a core assumption). Once k is larger than 3 or 4, it is assumed that the

probabilities become very small. This corresponds to our assumption that only short-term

representations of the absolute magnitudes of stimuli are available, from, at most, a few trials

ago. Thus, on each trial, one of a series of possible states will occur, with each state

corresponding to the pattern of availability or otherwise of previous stimuli. In general, if any
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of the past K stimuli can be recalled there will be 2K states. This assumption forms the basis for

all of the MAC models that we present below.

Table 1A provides an example when up to three previous stimuli can be utilized. The

top row represents the state where no previous stimuli are recalled. The second row represents

the state where Sn-1 cannot be recalled, Sn-2 cannot be recalled, and Sn-3 is recalled. The final

row represents the state with probability p1 p2 p3 where all previous stimuli (up to Sn-3) can be

recalled. 

The Models1

We are now in a position to describe three variants of the MAC model. In all of the

models that we present, we assume that, if a sign-useful stimulus can be recalled, the current

stimulus is correctly classified. Consider the example in Table 1B, when the sequence of

stimuli, from Sn-3 to Sn, is {Stimulus 2, Stimulus 5, Stimulus 7, Stimulus 3}. For the category

structure in Figure 1, when classifying Stimulus 3, any of Stimuli 3, 4, or 5 are sign-useful.

Thus, whenever Sn-2 = 5 is recalled, as it is in States 3, 4, 7, and 8 (numbering rows from top

to bottom), then we assume that participants will respond with the correct Rn. 

The models differ only in what happens if no sign-useful stimulus is available. We

present four models. If, in a given state, no sign-useful stimulus is recalled then: (a) Rn is

guessed (Guessing Model); (b) Fn-1 is given as Rn with probability psame (Feedback Repetition

Model); (c) the feedback from the last recalled stimulus is given with probability psame or if no

stimulus can be recalled, Rn is guessed (Recalled Stimulus Model); and (d) the magnitude of

the difference between Sn and the last recalled stimulus is used to generate a response

according to Equation 1 or if no stimulus can be recalled, Rn is guessed (Sign and Magnitude

Model). The original MAC model is a special case of model (d) if only Sn-1 is assumed to be

available. The first three models are Sign-Only Models, and the last model is a Sign and

Magnitude Model. 

Continuing the example in Table 1B, according to the Guessing Model, Rn will be
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guessed in States 1, 2, 5, and 6. According to the Feedback Repetition Model, as Fn-1 =

Category B, Category B will be given as Rn in States 1, 2, 5, and 6 with probability psame.

When psame = .5 each category is equally likely. Thus, the Guessing Model is a special case of

the Feedback Repetition Model. The Recalled Stimulus Model predicts that the response will

be guessed in State 1, that in State 2 Category A (the category of the last remembered

stimulus Sn-3 = 2) will be given as Rn with probability psame , and that in States 5 and 6 Category

A (the category of the last remembered stimulus Sn-1 = 7) will be given as Rn with probability

psame . In the remaining states, States 3, 4, 7 and 8, one of the stimuli is sign-useful and the

correct response is given, as described in the previous paragraph. The Sign and Magnitude

Model predicts that the response will be guessed in State 1, in State 2 Category A will be

given as Rn with probability e�c �3�2�2

, and in States 5 and 6 Category B will be given as Rn

with probability e�c �3�7�2 . In the remaining states, States 3, 4, 7 and 8, one of the stimuli is

sign-useful and the correct response is given.

Model Predictions

Model predictions were generated for each of the models outlined above. For a given

model and a given sequence of stimuli, the probability of a correct response can be obtained in

three steps. First, the probability of each possible state is calculated. Second, the probability

that the model would produce the correct answer in each state is calculated. Third, the

probability of being correct is obtained by multiplying the probability of being correct in a state

by the probability of that state and then summing over all states. Figures 2-4 show the

predictions of the Feedback Repetition Model, the Recalled Stimulus Model, and the Sign and

Magnitude Model for the category structure illustrated in Figure 1. (As the Guessing Model is

a special case of the Feedback Repetition Model its predictions are omitted.) In these

simulations, we assumed that only the previous three stimuli could be recalled, with

probabilities p1 = .9, p2 = .6 and p3 = .3. We assumed that psame = .4 for the Feedback
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Repetition Model and the Recalled Stimulus Model, and c = 0.5 for the Sign and Magnitude

Model. 

The predictions for the Feedback Repetition Model are shown in Figure 2. The

probability of a correct Rn as a function of Sn-1 (averaging across all possible earlier stimuli) is

shown for different Sn. (Lines for values of Sn > 5 have been omitted for clarity, but can be

generated by reflecting the figure about the line Sn-1 = 5.5.) When Sn � Sn-1 � 5 (or Sn � Sn-1 �

6) then Sn-1 is sign-useful. These cases are represented by the high levels of performance above

a .9 chance of being correct. (The probability of being correct is less than 1.0 because Sn-1 is

only available 90% of the time. The probability of being correct is greater than .9 because

when Sn-1 is not available, using earlier stimuli does not always results in an error.) The

remaining points correspond to cases where Sn-1 is not sign-useful. In these cases, Sn-2 or Sn-3

may be available (with respective chances of .6 and .3). The probability that one of these

earlier stimuli is useful depends on Sn (but not Sn-1): When Sn is small (e.g., 1) then there are

many possible values of Sn-2 or Sn-3 that might be useful (e.g., 2-5); when Sn is larger (e.g., 5)

then there are fewer values of Sn-2 or Sn-3 that are useful (e.g., only 5). The dependency on the

value of Sn as to whether a previous stimulus is useful gives the spreading of the lines in the

figure, with better performance for extreme Sn. 

When Sn-1 is not useful and if the psame =.5 (i.e., Rn is guessed if no sign-useful stimulus

can be recalled as in the Guessing Model), then the probability of being correct does not

depend on the value of Sn-1. When Sn-1 is not sign-useful and psame > .5 then the probability of a

correct response is higher if Sn-1 is from the same category as Sn. When psame < .5, then the

probability of being correct is higher if Sn-1 is from the opposite category to Sn. In this case, the

category contrast effect is predicted. Accuracy is also higher when psame < .5. The optimal

value of psame = .0. In other words, if no previous stimulus is sign-useful, the best thing to do is

give the opposite of Fn-1 as Rn. This is because when no previous stimulus is sign-useful the

correct answer is most often the opposite of the feedback from the previous trial. 
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In Figure 2B performance is plotted as a function of Sn-2 (rather than Sn-1 as in Figure

2A). Sn-2 has a smaller effect than Sn-1 because Sn-2 is available less often. When Sn-2 is not sign-

useful, then the probability of a correct response does not depend on Sn-2. Hence the

probability of being correct when Sn-2 < Sn-1 is the same as when Sn-2 > 5. 

In Figure 2C an example is provided for Sn = 4 to show the interaction between Sn-1

and Sn-2. If one averages over Sn-2 (i.e., collapses the plane onto the Sn-1 axis) then one obtains

the Sn = 4 line in Figure 2A. If one averages over Sn-1 one obtains the Sn = 4 line in Figure 2B.

The ridge labeled A represents predicted high accuracy performance when Sn-1 is sign-useful

(i.e., Sn-1 = 4 or 5). The ridge labeled B represents the case when Sn-2 is sign-useful. This ridge

is of lower accuracy than ridge A because Sn-2 is assumed to be available less often than Sn-1.

Where the two ridges intersect and both Sn-1 and Sn-2 are useful, it is very likely that at least one

will be recalled, and accuracy is very high. The plateaus labeled C-F represent cases when

neither Sn-1 or Sn-2 is sign-useful. For plateaus C and D, Sn-1 is from the opposite category to Sn

and so the correct answer is to give the opposite of Fn-1 as Rn. As psame = .4 the correct answer

is given 1 - .4 = .6 of the time. For plateaus E and F, Sn-1 is from the same category as Sn and

so the correct answer is to give Fn-1 as Rn. Thus the correct answer is given .4 of the time. 

The Feedback Repetition and Recalled Stimulus models make very similar predictions.

The only difference between the two models is that if no sign-useful previous stimulus can be

remembered in the Feedback Repetition Model then Fn-1 is repeated with some probability and

in the Recalled Stimulus Model then the feedback to the last remembered stimulus is repeated

with some probability. Given that the previous stimulus is very likely to have been recalled, in

practice the two models are almost equivalent. The only difference is that Sn-2 does have a

small effect when no useful stimulus can be recalled in the Recalled Stimulus Model (i.e., the

horizontal components of Figure 3B are not constrained to be of equal value on the left and

right of the figure, as in Figure 2B). Apart from this small difference, the properties of the

predictions do not differ between the two models. For this reason, we do not consider the
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Recalled Stimulus Model further and instead will focus on the simpler Feedback Repetition

Model.

In the Sign and Magnitude Model, the signs and magnitudes of differences between the

current stimulus and recent previous stimuli are available, rather than just the signs of the

differences as in the other models. If none of the previous stimuli that are recalled are sign-

useful, then the difference from the last remembered stimulus is used. The smaller the

difference, the more likely that the category label feedback from the last stimulus is given in

response; the bigger the difference the more likely that the response will be the category that

was not indicated by the previous trial's feedback. Figure 4 shows the predictions of the Sign

and Magnitude Model with the same availability of previous stimuli as in the previous two

simulations. 

Figure 4A plots the probability of a correct Rn as a function of Sn-1 (averaging across all

possible earlier stimuli) for different Sn. When Sn-1 is sign-useful (i.e., Sn � Sn-1 � 5 or Sn � Sn-1

� 6) then performance is high, as in the Sign Only Models. When Sn-1 is not useful, then

accuracy depends on the difference between Sn-1 and Sn. When Sn-1 is similar to Sn, then the

probability of giving Fn-1 as Rn is high. Thus, when Sn-1 = 6 and Sn = 5, this will lead to errors as

the two stimuli come from opposite categories. As Sn-1 increases above 6, the difference grows

and the model predicts that swapping, which is the correct response, is more likely. When Sn-1

= 4 and Sn = 5, then, as the two stimuli are similar, Fn-1 is repeated as Rn, leading to accurate

performance. As Sn-1 decreases below 4, the difference increases, and swapping, which is

incorrect, becomes more likely. The Sign and Magnitude Model thus necessarily predicts the

category contrast effect. Figure 4B shows the same qualitative pattern of performance as a

function of Sn-2 not Sn-1. The pattern is greatly attenuated, as Sn-2 is assumed to be available less

often than Sn-1. 

Figure 4C is analogous to Figures 2C and 3C. In Figures 2C and 3C, when Sn-1 and Sn-2

are not useful, only the category of the previous stimuli is important (i.e., regions C-F are
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plateaus). However, in the Sign and Magnitude Models, the difference between stimuli, rather

than just the category of the previous stimuli, determines responding. Thus, in the same

regions, performance is predicted to vary as a function of the magnitudes of Sn-1 and Sn-2 (or,

more specifically, the differences from Sn, but Sn is held constant at 4 in this plot). The

explanation of this pattern is as above.

Experiment

In the previous modeling section, we outlined two categories of model. In one model,

only the sign of the difference between previous stimuli was available. In the other model, both

the sign and the difference of the previous stimulus was available. These two classes of models

necessarily make quite different predictions. The Sign Only Models predict that, when no

previous stimulus is sign-useful, only the category of previous stimuli will influence responding

on the current trial. The Sign and Difference Models predict that, when no previous stimulus is

sign-useful, the magnitude of the previous stimuli will have a continuous effect. The purpose

of this experiment is to test these two contrasting accounts. For this purpose, participants

classified a truly random sequence of stimuli to examine the effects of previous stimuli on

classification of the current stimulus. 

Method

Participants. Sixteen undergraduate psychology students volunteered to participate.

Stimuli. Ten 500-ms sine-wave tones of differing frequency were used as stimuli in this

experiment. Each tone was 6% higher in frequency than the tone immediately lower in

frequency, and thus the tones were equally spaced on a log-frequency scale. The first tone had

a frequency of 768.70 Hz, and the last tone had a frequency of 1298.70 Hz. The 10 tones

were divided into two categories, with the 5 lowest frequency tones in one category, and the 5

highest frequency tones in the other category. The amplitude of stimuli was linearly ramped

from zero to maximum in the first 50 ms of the stimulus and from maximum to zero in the last

50 ms of the stimulus to prevent click artifacts at the stimulus onset and offset. Stimuli were
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transduced using a Creative Labs Ensoniq CT5880 audio PCI sound card and Sennheiser

eH2270 headphones.

Procedure. Participants were tested one at a time in a quiet room. Participants were

informed that they would hear a number of tones, one after the other. They were told that low

tones belonged to one category and high tones belonged to another, and that after each tone

they would be asked to respond with the category they thought the tone came from. Although

at first participants would have to guess, they were informed that by attending to the correct

answer displayed on the screen after each response, they could learn which tones belonged to

which category. They were given an opportunity to ask the experimenter questions before the

experiment began.

Each trial began with a tone randomly selected (with replacement) from the set. A '?'

prompt appeared on the screen with the onset of the tone. From the onset of the tone

participants were able to respond with either 'Z' or 'X' (labeled 'A' and 'B' respectively) on a

standard keyboard. The assignment of labels to categories was counterbalanced across

participants. The '?' prompt disappeared immediately after participants responded. After the

participants had responded or 500 ms after the offset of the tone, whichever was later, the

correct answer (either 'A' or 'B') was displayed on the screen for 500 ms. Feedback was given

throughout the experiment. There was a 500-ms pause before the next trial began. There were

six blocks each of 100 trials. Participants were given a break between each block. 

Results

Accuracy. Figure 5 shows the proportion of correct responses as a function of Sn.

Performance has been averaged across the two categories, so that the abscissa represents the

stimuli furthest from the category bound on the left and those closest on the right.

Performance is highest on the extreme stimuli and decreases monotonically to be lowest for

the borderline stimuli, F(4, 60) = 188.93, p < .0001 (one-way univariate ANOVA). 

Sequence effects. Figure 6 shows the interaction between current and previous stimuli.
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Figure 6A shows the interaction between Sn and Sn-1. When Sn-1 is sign-useful, accuracy is high.

Otherwise, accuracy depends only on the category of Sn-1, with higher accuracy when Sn-1

belongs to the opposite category to Sn, consistent with the original category contrast effect. A

two-way univariate ANOVA was run, with factors Sn and Sn-1. There was a main effect of Sn,

F(4, 52) = 176.10, p < .0001. There was a main effect of Sn-1, F(9, 117) = 3.92 , p = .0002.

There was also significant interaction, F(36, 468) = 4.27, p < .0001. Figure 6B shows the

interaction between Sn and Sn-2. Another two-way univariate ANOVA was run, with factors Sn

and Sn-2. There was a main effect of Sn, F(4, 40) = 129.36, p < .0001. There was a main effect

of Sn-2, F(9, 90) = 4.42 , p < .0001. There was also significant interaction, F(36, 360) = 1.66,

p = .0117.2 Effects of Sn-3 and Sn-4 and their interactions with Sn were examined. Although the

pattern of data was similar to that for Sn-1 and Sn-2, the effects and interactions were not

significant: largest F(1, 117) = 1.62, p = .1162. We think that it is likely that significant effects

would be found in a more powerful experiment.

The category contrast effect. It is possible to test the category contrast effect observed

by Stewart et al. (2002). Recall that the category contrast effect is defined as more accurate

categorizations of a borderline stimulus following a distant stimulus from the opposite

category compared to a distant stimulus from the same category. This effect can be examined

in the current data by comparing accuracy for Sn = 5 (the borderline stimulus) in Figure 6A

when Sn-1 = 10 (distant stimulus from the opposite category) and when Sn-1 = 1 (the distant

stimulus from the same category). A t-test shows that although the direction of the difference

is consistent with the category contrast effect, the difference is not significant, one tailed t(15)

= 1.26, p = .1143.3 However, we have already noted that only the category of Sn-1 seems to

matter. When performance averaged over 1 � Sn-1 � 4 is compared to performance averaged

over 7 � Sn-1 � 10, performance is higher when Sn-1 is from the opposite category, consistent

with the category contrast effect, one tailed t(15) = 2.53, p = .0116. A similar analysis was

performed for Sn-2. The category contrast effect was significant when only extreme values of
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Sn-2 were used in the comparison, one tailed t(15) = 2.63, p = .0094, and when only the

category of Sn-2 was used, one tailed t(15) = 2.01, p = .0316.

Conditional sequence effects. A strong prediction of the MAC models described here

is that when a previous stimulus is recalled and is sign-useful, other previous stimuli will have

no effect.4 To investigate this prediction was assumed that Sn-1 is nearly always available.

Performance is plotted as a function of Sn and Sn-2 in Figures 7A and B. Performance when Sn-1

is sign-useful is plotted in Figure 7A and when Sn-1 is not sign-useful in Figure 7B. (Note that

few data are available for the line Sn = 5, as it is quite rare that Sn-1 is useful when Sn = 5: Some

of the data points are based on as few as 10 responses, and hence the standard error of the

mean is large.) As we are assuming that Sn-1 is almost always available, Sn-2 should have no

effect when Sn-1 is sign useful and Sn-2 should have an effect when Sn-1 is not sign-useful. This is

the pattern that is observed. Figures 7C and D contain the analogous examination of the effect

of Sn-1 when Sn-2 is sign-useful (Figure 7C) and is not sign-useful (Figure 7D). We have no way

of knowing whether Sn-2 was available to participants on each of these trials, as we have no

independent measure of the availability of stimuli (we do not assume that Sn-2 is nearly always

available). Thus, although Sn-2 was potentially useful on all of the trials that contributed to

Figure 7C, it was not always available. Thus we predict an attenuated effect of Sn-1 in Figure

7C compared to Figure 7D. This is the pattern that is observed.

Discussion

The purpose of this experiment was to examine the effect of previous stimuli on

classification of a current stimulus in a binary categorization. We found large effects of

previous trials, and interactions between these effects that were consistent with the predictions

of Sign-Only MAC models.5 Specifically, if Sn-k was sign-useful (i.e., using only the sign of the

difference between Sn-k and Sn allowed the category of Sn to be determined) then Rn was

accurate and unaffected by other preceding stimuli. An interaction of this sort is entirely

consistent with the interaction found by Petzold and Haubensak (2001). When Sn-k was not
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sign-useful, only the category of Sn-k determined responding, as assumed in the Sign-Only

MAC models. As we found an effect of the category of Sn-2, this rules out Guessing and

Feedback Repetition models which do not predict this effect (these models specify that when

no sign-useful previous stimulus is available, then either Rn is guessed, or Fn-1 is repeated with

some probability - both predict no effect of Sn-2).

The category contrast effect was also replicated: when Sn-k was not sign useful, Rn was

more accurate when Sn-k was from the opposite category. However, we found no evidence that

the magnitude of the difference between stimuli was utilized, as was assumed in the original

MAC model (Stewart, et al., 2002). It seems that this original explanation of the category

contrast effect must be modified. The explanation offered here is that of the Recalled Stimulus

MAC model: that is, when no previous stimulus is sign-useful, it is optimal for the feedback

from the last recalled stimulus to be repeated with probability psame < .5. When this is the case

then the Recalled Stimulus MAC model predicts greater accuracy. 

Sequential effects have been examined extensively in the magnitude estimation

paradigm which was popularized by Stevens. Typically, in multiple regression analyses,

current responses are contrasted with previous stimuli and assimilated towards previous

responses (e.g., Jestead et al., 1977; Ward, 1982, 1985, 1987). Our category contrast effect is

also an example of a contrastive relationship between the previous stimulus and the current

response, albeit in a different task. The true nature of the relationship between the previous

stimulus and the current response in magnitude estimation tasks may not be contrastive.

Instead, the negative coefficient of Sn-1 revealed in many multiple regression analyses may

confound a (possibly additive or assimilative) perceptual effect of Sn-1 with a hidden

autocorrelated error in the judgment process (DeCarlo, 1992, 1994; DeCarlo & Cross, 1990).

This possibility goes some way towards reconciling the assimilation seen in absolute

identification with the contrast seen in magnitude estimation and in our own categorization

task. We return to this possibility below. 
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Not all authors find a contrastive effect of the previous stimulus. In magnitude

estimations of length and numerousness, Morris and Rule (1988) found that the correlation

between the deviation from the mean response to a given stimulus on the current trial and the

previous stimulus was very small. Morris and Rule accounted for their lack of a contrast effect

compared to that found by previous authors by suggesting that the contrastive relationship is a

sensory effect that would differ between different stimulus continua (p. 72). This account may

well explain the discrepancy between our results and Morris and Rules's. An alternative is to

note that in magnitude estimation tasks, to the extent that participants can perform the task,

stimulus magnitudes and responses are correlated. As the effects of previous stimuli and

responses on the current response are opposite, they may well have canceled out in Morris and

Rule's data (for an example of such cancellation, see Schifferstein & Frijters, 1992).

Haubensak (1992a) also failed to find an effect of preceding stimuli. Haubensak had

participants judge the size of 10 squares using six categories without feedback. To investigate

whether contrast effects occurred, Haubensak varied the sequential dependencies. For one

group of participants, the probability with which the current stimulus came from the same half

of the continuum was .75 and for another group it was .25. Haubensak found that the ratings

given to each square did not differ between the two groups. Under the hypothesis of contrast

between successive stimuli, ratings should have been higher for the first half of the scale and

lower for the second half of the scale for the .75 Group (as in the .75 Group the preceding

stimulus more likely to have been from the same half of the continuum). However, a

contrastive model only predicts very small differences in this paradigm. For example, if the 10

stimuli are assumed to be evenly spaced psychologically and contrast is set to be 10% of the

difference between stimuli, then the mean rating for squares differ by only 0.14 on a six point

rating scale between the two groups. Further, although Haubensak found that the previous

stimuli did not systematically bias the current response, if previous stimuli are similar, the error

in the current response is greatly reduced, at least in absolute identification of loudness (Luce
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et al., 1982; Nosofsky, 1983) and length (Hu, 1997). 

Jestead et al. (1977) argued that sequential effects in psychophysical tasks such as

magnitude estimation, absolute identification, and categorization extend to only the

immediately preceding stimulus. They describe the notion that the effects may extend to

stimuli further back in the sequence as "appalling" (p. 92) and "disturbing" (p. 93). They argue

that the depth of sequential effects observed by Lockhead and his colleagues (e.g., Holland &

Lockhead, 1968; Ward & Lockhead, 1970, 1971; Ward, 1972, 1973) are artifactual and that

only the immediately preceding influence affects responding on the current trial. They argue

that deeper sequential effects are in fact caused by a propagation of errors in responding to

subsequent stimuli (see also DeCarlo, 1992, 1994; DeCarlo & Cross, 1990). For example, Sn-2

and Rn-2 would affect Rn-1, which in turn would affect Rn. Sn-2 would not directly affect Rn. In

the present data, we have found significant sequential effects up to a depth of two previous

trials (consistent with Petzold & Haubensak, 2001, though their task was different). However,

responses contained only one bit of information (either Category A or B). When Sn-2 is from

the same category as Sn, sometimes Sn-2 will be sign-useful and sometimes it will not. Fn-2 or

Rn-2 do not contain this information. Thus it is hard to see how information about Sn-2 can be

propagated to the current trial through consecutive responses. The "appalling" and

"disturbing" alternative is that Sn-2 directly affects Rn, as we assume in extending the MAC

model to account for these effects. A second alternative is to postulate an intermediate

decision scale that lies between a sensory scale and a response scale, breaking with the

traditional form of Stevens (1957) assumption that responses are directly proportional to the

sensation magnitude. This might well be the case in our binary categorization task. Sequential

effects could then be propagated through successive errors in judgment error on the decision

scale that would not be observed on the much coarser binary response scale. However, if this

is the case, why is the difference magnitude information that would be available from the

postulated decision scale not used in judgment?
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General Discussion

In this article we have considered how the MAC strategy might be extended to

account for the effects of not only the immediately preceding stimulus, but also other recent

stimuli. There are several psychological axioms that lie behind the extension of the model.

First, information about the absolute magnitudes of stimulus properties is only available from

the short-term memory representations of very recent trials. We have assumed, for the

purposes of illustration, that there are no long-term representations of absolute magnitudes.

Second, the differences between recent stimuli and the current stimulus are used to classify the

current stimulus. We tested two alternatives here: (a) that only the sign of the differences is

utilized or (b) that both the sign and magnitude of the differences are utilized. Third,

information from each preceding trial is not used independently, but instead there is an

interaction, such that whether or not information from one previous trial is used depends on

other previous trials. The data that we presented in the Experiment are most consistent with

the idea that only the sign of differences between the current stimulus and preceding stimuli is

utilized, at least for the present category structure and stimuli, and that this information is used

in a context-dependent way. Before closing this article we address some of the issues raised by

these ideas.

Relative and Absolute Models of Categorization

Traditional models of categorization, such as exemplar models, assume that the

absolute magnitude of a stimulus provides the basis for categorization. MAC models assume

that it is the differences between the current stimulus and recent stimuli that provide the basis

for categorization. We do not wish to suggest that absolute magnitudes are completely

unavailable and unrepresented in the sensory pathways. A simple thought experiment shows

that such a position is untenable. Consider categorizing tones on the basis of their frequency.

The original claim that only the difference between Sn-1 and Sn is used in the decision process

makes the implicit assumption that the absolute magnitude of Sn-1 is temporarily represented:
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Without some temporary memory of the absolute magnitude of the previous stimulus being

maintained over the silent inter-trial interval then it would be impossible to construct or

perceive the difference between the current stimulus and the previous stimulus. Constructing

such a difference involves comparing Sn-1 and Sn, and thus some representation of the absolute

magnitude of Sn-1 must be maintained until, and available when, Sn is perceived.6 The claim that

we are making is that the long-term memory representations of stimuli do not contain absolute

magnitude information (or that if they do, the information is not used in a binary

categorization of tones varying in frequency). Thus, long-term memory representations differ

qualitatively from the representations of current or very recent stimuli. 

Long-Term Frames of Reference

The data of Ward and Lockhead (1970) and Ward (1987) are problematic for the claim

that there is no long-term representation of absolute magnitudes. Stimuli varying in loudness

were used in different psychophysical tasks. Some tasks - absolute identification with

feedback, absolute identification without feedback (i.e., category judgment), and ratio

magnitude estimation of successive stimuli - required participants to make relative judgments

(Ward & Lockhead, 1970; Experiments 1 and 2 of Ward, 1987). Other tasks - absolute

magnitude estimation and cross modality matching (to duration) - required participants to

make absolute judgments (Experiments 3 and 4 of Ward, 1987). For a given task, sessions

were repeated over several days. The crucial manipulation was to vary the loudness of the

stimulus set on different days, by either increasing or decreasing the intensity of all of the

stimuli by a constant. No matter whether the participants were supposed to be making

absolute or relative judgments, judgments in a given session were biased by the stimulus-

response mapping from the previous day's session. Participants had a tendency to respond to

stimuli as if they could partly recall the responses associated with stimuli on the previous day's

session. These data are the strongest evidence we know of for long-term frames in

psychophysical judgment, which in this case are given by the previous day's stimulus-response
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mapping.

How might Ward's data be reconciled with our own? If people can store only a single

frequency in the long-term, they should do very well in a binary categorization by storing a

stimulus at the category boundary, given that adjacent stimuli are easily discriminable. Thus,

we conclude that such a representation is either unavailable or very poor (or "fuzzy", as Ward,

1987, p. 226, suggests). 

Our data concern frequencies of tones; Ward's concerned the loudness of tones. Long-

term absolute magnitudes may be available only for loudnesses, or unavailable only for

frequencies (few people have perfect pitch; about 0.01% of the general population, Takeuchi

& Hulse, 1993). An alternative is that a long-term frame of reference is available for

frequency, but for some reason is not utilized in our task. Certainly, task characteristics seem

to be able to alter the balance between short and long term frames of reference. DeCarlo

showed that a long-term frame of reference was more heavily weighted in a regression

equation fitted to magnitude estimation data when instructions suggested a long-term frame of

reference (DeCarlo & Cross, 1990; DeCarlo, 1994) or when inter-trial intervals were large

(DeCarlo, 1992).7

A second source of evidence that seems problematic for the claim that there are no

long-term frames of reference concerns the ubiquitous bow effect: Typically, performance is

better on extreme stimuli in an absolute identification than for central stimuli (Braida &

Durlach, 1972; Durlach & Braida, 1969; Lacouture, 1997; Lacouture & Marley, 1995; Luce,

Green, & Weber, 1976; Pollack, 1952, 1953; Weber, Green, & Luce, 1977). While the

restricted ability to make mistakes at the ends of the range certainly contributes to the bow

effect, many authors attribute the effect to differential sensitivity along the stimulus range

(Berliner, Durlach, & Braida, 1977; Braida & Durlach, 1972; Luce et al., 1982; Shiffrin &

Nosofsky, 1994) or memory for the extreme stimuli (Berliner & Durlach, 1973; Braida et al.,

1984; Marley & Cook, 1984; see also Gravetter & Lockhead, 1973). However, the bow effect
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can be explained without recourse to long-term frames of reference. Each variant of the MAC

model presented here predicts better performance for extreme stimuli, because extreme stimuli

are more likely to have a sign-useful stimulus in the set of recent stimuli. This approach can

also be applied to absolute identification. Unpublished modeling from our laboratory

demonstrates that a bow effect can be produced if the sign of the difference between the

previous stimulus and the current stimulus is used to restrict the range of possible responses,

from which one is selected at random. This is because the range of possible responses

generated in this way always contains the correct response and, on average, is smaller for

extreme stimuli. Thus the bow effect need not be interpreted as evidence for long-term frames

of reference. 

Reconciling Exemplar and MAC Models

It may seem that the MAC models described here are hard to reconcile with exemplar

models of categorization, that currently dominate the literature. However, Stewart and Brown

(2003) showed that this is not the case. In exemplar models, the similarity between two

exemplars is a function of the difference between them, and thus although exemplar models

assume that absolute magnitudes are available, classification of stimuli depends only on

stimulus differences. 

Stewart and Brown (2003) suggested that the issue of the availability of absolute or

relative magnitudes may be reconceptualized in terms of the availability of exemplars in

memory. Stewart and Brown developed an extension of an exemplar model, the generalized

context model (GCM, Nosofsky, 1986), by modifying the choice rule. The key psychological

claim instantiated in this extension is that not only is the similarity of a novel exemplar to

stored exemplars of a category evidence that the novel exemplar belongs to that category, but

also the dissimilarity to alternative categories. This modification allows a large dissimilarity (or

a small similarity) to count as evidence against category membership (cf. standard models

where very low similarity counts as evidence, albeit very slight, for category membership). The
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original MAC model was shown to be a special case when only recent exemplars were

assumed to be available. When all exemplars were assumed to be available, Stewart and

Brown's extension closely mimics the GCM. Thus, the only real difference between the two

accounts is that the MAC model assumes that only immediately preceding stimuli are

available, and that long-term memory representations of the absolute magnitudes of stimuli

cannot be formed. Conversely, the GCM assumes that every previously encountered

exemplar's absolute magnitude is stored in long-term memory.

Direct or Indirect Availability of Differences

In our extension of the MAC model to utilize information from prior trials other than

the immediately preceding trial, we assumed that the information about previous trials is

directly available. For example, we assume that the difference between Sn and Sn-2 is deduced

by comparing the short-term memory trace of Sn-2 with Sn. An alternative is that such a

comparison is not made because Sn-2 is not available in memory when Sn is encountered.

Instead long-range differences could be deduced by summing intervening consecutive

differences. For example the difference between Sn-2 and Sn might be derived by summing the

difference between Sn-1 and Sn-2 with the difference between Sn and Sn-1. If this is the case, then

why is the magnitude of difference information not used (see Experiment)? It would seem

unlikely that the magnitudes of differences were used to estimate long-range differences, and

yet were not utilized in categorization.8

In the Sign-Only MAC Models that receive support from the Experiment, we assume

that only ordinal judgments are used in a simple binary categorization. It is possible to infer

something about long-range ordinal judgments if only ordinal judgments between consecutive

stimuli are available. Table 2 it is shown that the sign of the Sn-2 - Sn difference can only be

deduced from intervening consecutive differences when Sn-2 - Sn-1 and Sn-1 - Sn are of the same

sign. In these cases either Sn � Sn-1 � Sn-2 or Sn � Sn-1 � Sn-2. (In the remaining cases the sign

of the Sn-2 - Sn difference can only be deduced if the magnitude of the intervening consecutive
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differences is available.) Thus, Sn-2 can only be sign-useful if its sign is deduced from only

ordinal information about intervening consecutive differences, when Sn-1 is also sign-useful.

The data illustrated in Figure 7B show that Sn-2 is sign-useful even when Sn-1 is not. Thus we

suggest that Sn-2 is not deduced from only ordinal information about intervening consecutive

differences.

To conclude, together the above two arguments suggest that the sign of longer-range

stimulus differences is deduced by comparing Sn directly with the short-term memory trace of

Sn-k. This conclusion necessarily implies that some absolute magnitude information is available,

at least in the short term, for preceding stimuli other than just the immediately preceding

stimulus. 

Relationship to Existing Models

Petzold and Haubensak's (in press) multiple standards model provides an account of

how unidimensional stimuli are categorized. The model uses the nearest upper and lower

reference points taken from the previous two stimuli and the maximum and minimum stimuli.

This selection of reference points is motivated by Haubensak's (1992b) consistency model.

Thus, the relative arrangement of Sn, Sn-1, and Sn-2 determines the reference points selected. For

example, consider the absolute identification of 10 evenly spaced stimuli. If Sn-2 = 6, Sn-1 = 9,

and Sn = 4, then Sn-2 = 6 will be selected as the nearest upper anchor SU and Stimulus 1 will be

selected as the lowest anchor SL. Rn is then generated by linear interpolation (i.e., responding

such that (Rn - RL) / (RU -RL) matches the ratio of the stimulus magnitudes (Sn - SL) / (SU - SL)).

(This covers the case when there are fewer categories than stimuli.) Thus the multiple

standards model differs from the MAC model we advocate as it assumes that (a) absolute

magnitudes are maintained in long-term memory, at least for the extreme stimuli, and (b) that

the magnitudes and signs of the differences are used. However the multiple standards model

and the MAC models described here have in common the assumption that the selection of

stimuli as standards depends on the magnitudes of those stimuli and the magnitudes of other
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recent stimuli.

DeCarlo also suggests that multiple standards might be used in making psychophysical

judgments. In his dynamic theory of proportional judgment (DeCarlo & Cross, 1990; DeCarlo,

1992, 1994), two frames of reference are suggested. One frame comprises a long-term

reference stimulus (perhaps the first stimulus) and the response assigned to it. The other frame

comprises the previous stimulus and the previous response. The relative reliance upon each

frame is modulated by a free parameter. Our data presented in the Experiment and those of

Petzold and Haubensak (2001) described above suggest that the frame of reference may

change on a trial-by-trial basis, depending on the current and immediately preceding stimulus.

Such trial-by-trial changes in the frame of reference could, in principle, be accommodated

within the dynamic theory of proportional judgment by specifying how the free parameter

modulating the relative contributions of each frame might be made to depend on the context

provided by current and recent stimuli. For example. DeCarlo and Cross (1990, p. 387)

provide an account of the observation that the autocorrelation of successive responses is

highest when stimuli are similar (e.g., Baird et al., 1980; Jestead et al., 1977; Schifferstein &

Frijters, 1992) by allowing the free parameter to be proportional to the difference between

successive stimuli. However, for such an approach to be successful in its application to our

data, additional frames of reference would need to be included for Sn-2 and perhaps further

back. This, then, would be a departure from another key aspect of the model which attributes

long range sequential dependencies in the data to the propagation of judgment errors through

successive responses (as described in the Discussion of the Experiment above).

Treisman and Williams (1984) proposed a theory of criterion setting to account for the

sequential effects observed in many psychophysical tasks. The basis of the model is to assume

a Thurstonian sensory scale, which is divided into response categories by criteria. This model

then immediately differs from MAC models by assuming that absolute magnitudes of stimulus

properties are directly available to the decision process. Two opposing, short-term
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mechanisms act on the criteria on a trial-by-trial basis. First, a tracking mechanism, motivated

by the assumption that objects in the real world tend to persist (Treisman & Williams, 1984, p.

94), moves criteria away from the currently perceived sensory effect. This increases the

probability of repeating the response associated with the stimulus that was most likely to have

caused that sensory effect. Second, a stabilizing mechanism acts to locate criteria nearer to the

prevailing flux of sensory inputs to increase the amount of information transmitted (Treisman

& Williams, 1984, p. 94). The stabilizing mechanism acts in opposition to the tracking

mechanism, and Treisman and Williams suggest that these two mechanisms are each affected

by different variables. The model can, in principle, account for the category contrast effect, if

it is assumed that the stabilization mechanism dominates. For example, consider in our

experiment, Stimulus 1 followed by Stimulus 5. Stimulus 1 would cause the category bound to

move down the scale. Thus, Stimulus 5 is now more likely to be categorized into Category B,

as seen in the category contrast effect. If Stimulus 10 precedes Stimulus 5, then the stabilizing

mechanism will move the bound up the scale, making a Category A response to Stimulus 5

more likely. 

We cannot see a clear theoretical motivation for assuming that stabilization should

dominate in an binary categorization task with feedback. Such an argument would have to rest

on the task properties specific to binary categorization favoring stabilization over tracking.

Treisman and Williams (1984, pp. 103-104) suggest that feedback should reduce tracking as

bounds are only modified by tracking when the correct response is given. This argument

predicts that as the number of categories is reduced in a categorization task and accuracy rises,

tracking should be increased. Thus more assimilation is predicted. Treisman and Williams also

suggest that stabilization should increase as the number of categories increases (p. 104). Thus,

with few categories there should be little stabilization. In summary, these two arguments

predict that tracking should dominate stabilization, which in turn would predict a category

assimilation effect. 
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Further, the criterion-setting model cannot account for the interaction between the

effects of previous stimuli seen in Petzold and Haubensak's (2001) data, as Petzold and

Haubensak themselves point out (p. 970), or the interactions in our data, as the effect of

previous trials is accumulated in a linear sum (Treisman & Williams, 1984, p. 75). Despite this

failure, the generality of the criterion-setting model suggests that it should be pursued as an

account of sequential effects.

In applying the judgment option model (a component of complementarity theory) to

category judgment, Baird (1997) classifies contextual effects as a product of the response

process, as we do in our MAC models. Specifically, his model assumes that variability in

psychophysical judgment can be attributed to uncertainty about which response should be

associated with a given stimulus. Baird's model differs from the MAC models in that absolute

magnitudes of stimuli are assumed to be available. Participants are assumed to use stimulus-

response pairings, which, following Haubsensak (1992b), are determined by the responses

early in the experimental session. Subsequently, the rank-order decision rule is used within the

judgment option model, whereby participants give responses that follow the same rank order

as the stimuli. Baird discusses the example for a binary categorization (p. 209), giving three

explicit rules: (a) if Sn = Sn-1, Rn = Rn-1, (b) if Sn > Sn-1, Rn = Catgeory B, (c) if Sn < Sn-1, Rn =

Category A. These rules bear some relation to the concept of sign-usefulness we introduced

earlier. However, Baird's rules are more generally applicable. Our data do not support this

generality. For example, (b) suggests that if Stimulus 1 is judged as Category A, then any

larger subsequent stimulus should be judged Category B. Figure 6 shows that this is not the

case. When Stimuli 2-5 follow Stimulus 1, they are more often categorized into Category A.

Although Baird's complementarity theory is considerably more general than our MAC models,

it does not offer an obvious account of the sequential effects in our data. 

 Laming (1997) argues that the judgments underlying performance in many

psychophysical tasks are no better than ordinal (i.e., 'greater than', 'the same as', and 'less
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than'). This argument was motivated by the observation that the variability in performance in

magnitude estimation, absolute identification, and cross-modal matching is typically several

orders of magnitude greater than that which is associated with discrimination of the same

stimuli. Laming then demonstrates that ordinal judgments of this kind are sufficient to explain

much of the data from psychophysical experiments, to explain the dependency of the results on

the range of stimuli selected for the experiment, and to explain the sequential effects observed

in these tasks. The data we present in this Experiment are consistent with Laming's assumption

that judgments are ordinal, and this assumption is at the core of the MAC model that we

present to account for the data. Where we differ from Laming is in assuming that ordinal

judgments are not just possible for the comparison of the immediately preceding stimulus with

the current stimulus, but also for other very recent stimuli. Our MAC model is consistent with

Laming's key claim: that there is no internal scale of sensation and that instead, judgment is

relative to the context in which stimuli are presented.
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Footnotes

1Mathematica code is available for these models from Neil Stewart.

2The degrees of freedom do not match in these two ANOVAs because of missing

values: Because of the truly random selection of stimuli, not all cells in the design contained

data from every participant.

3In the original category contrast experiment (Stewart, et al., 2002) the category

contrast effect was based on 10 participants each responding to 400 borderline stimuli after

extreme stimuli. In the present experiment, which was not designed specifically to detect this

effect, the category contrast effect is based upon data from 16 participants each making, on

average, only 23.8 critical responses. The reduced power in the current design is probably

responsible for the failure to replicate the category contrast effect using Stewart et al.'s (2002)

analysis.

An alternative suggestion is that the category contrast effect in the current data might

be smaller because the spacing between the stimuli was increased from 1% in Stewart et al.'s

(2002) study to 6% in the current study. However, this increase in spacing had only a very

slight effect on the proportion of correct responses averaged over all stimuli (84.1% originally

verses 85% now). This is in line with similar results in absolute identification that show that,

once adjacent stimuli are discriminable, increasing the range has only a very small effect

(Braida & Durlach, 1972; Pollack, 1952). We conclude that it is the lack of power rather than

the altered stimulus spacing that is responsible for the marginal category contrast effect seen

here.

4It is not possible to examine the complete three-way interaction between Sn, Sn-1, and

Sn-2, as there are insufficient data. To collect sufficient data, each participant would need to

complete approximately 10,000 trials.

5There is some evidence that the magnitude of the difference between stimuli might be

being used. Performance on the extreme stimuli, Stimuli 1 and 10, is good, no matter what the
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preceding stimulus is. The Sign-Only MAC models predict that performance should be better

when the preceding stimulus is from the same category (as these stimuli will always be sign-

useful) compared to the case when the preceding stimulus is from the opposite category (as

these stimuli will never be sign-useful). This prediction is dependent on other recent stimuli

also not being sign-useful. As the probability that other stimuli can be recalled rises, this effect

is predicted to get smaller. However, if the magnitude of the difference is also available, then

the preceding stimulus will either be sign-useful (if it is from the same category) or sufficiently

different to promote a swap from the previous feedback to the current response (if it is from

the opposite category) (see Figure 4A). If only coarse difference magnitude information is

available, as Laming (1997) suggests, this would probably be sufficient. We would like to

thank Shuji Mori for this observation.

6In addition to this point, there is good neurophysiological evidence that absolute

magnitudes are represented in sensory pathways. For example, auditory nerve fibers are tuned

to specific frequencies (e.g., Kiang, 1975) and neurons in the auditory cortex are arranged in

tonotopic maps (e.g., Abeles & Goldstein, 1970). 

7An alternative is that these manipulations encourage a more even weighting of recent

trials (i.e., Sn-1, Sn-2, Sn-3, ...). On average, this would appear as a reduced effect of trial n-1 and

an increased contribution from a long-term frame of reference.

8The issue of whether Sn - Sn-2 is available directly or must be deduced by summing Sn-2

- Sn-1 and Sn-1 - Sn can be determined by examining the variability in responding on trials n-1

and n. The argument is as follows. If Sn - Sn-2 is the sum of Sn-2 - Sn-1 and Sn-1 - Sn then Var(Sn -

Sn-2) = Var(Sn-2 - Sn-1) + Var(Sn-1 - Sn). Thus Var(Sn - Sn-2) � Var(Sn-1 - Sn). Thus, if

information from trial n-2 is used in addition to information from trial n-1, it cannot reduce the

variability in responding to Sn if any weighted average of the two sources of information is

used (as in Equation 2). This is, of course, not necessarily the case if Sn - Sn-2 and Sn-1 - Sn

interact in producing Rn (as in the Experiment and Petzold & Haubensak, 2001). 
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Table 1

A: States of the Availability of Previous Stimuli

Stimulus Availability
Sn-1 Sn-2 Sn-3 State Probability
0 0 0 (1 - p1) (1 - p2) (1 - p3)
0 0 1 (1 - p1) (1 - p2) p3

0 1 0 (1 - p1) p2 (1 - p3)
0 1 1 (1 - p1) p2 p3

1 0 0 p1 (1 - p2) (1 - p3)
1 0 1 p1 (1 - p2) p3

1 1 0 p1 p2 (1 - p3)
1 1 1 p1 p2 p3

Note. 0 denotes 'unavailable' and 1 denotes 'available'.

B: An Example for the Category Structure in Figure 1 when Sn = 3

Stimulus Availability
Sn-1 = 7 Sn-2 = 5 Sn-3 = 2 State Probability

(p1 = .9, p2 = .6, p3 = .3)
Sign-Useful

Stimulus
Recalled?

Most Recent
Available
Stimulus

0 0 0 .028 No None
0 0 1 .012 No Sn-3

0 1 0 .042 Yes, Sn-2 Sn-2

0 1 1 .018 Yes, Sn-2 Sn-2

1 0 0 .252 No Sn-1

1 0 1 .108 No Sn-1

1 1 0 .378 Yes, Sn-2 Sn-1

1 1 1 .162 Yes, Sn-2 Sn-1
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Table 2

Inferring Long-Range Ordinal Relationships from Consecutive Ordinal Judgments

Sn-2 - Sn-1 Sn-1 - Sn

Implied Sign of 

Sn-2 - Sn

+ + +
- + ?
+ - ?
- - -
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Figure Captions

Figure 1. Ten stimuli distributed evenly along a single psychological dimension divided into

two categories.

Figure 2. Predictions of the Feedback Repetition MAC Model (b). A: The probability of a

correct Rn as a function of Sn-1 for different Sn. B: The probability of a correct Rn as a function

of Sn-2 for different Sn. C: The probability of a correct Rn as a function of Sn-1 and Sn-2 when Sn =

4. 

Figure 3. Predictions of the Recalled Stimulus MAC Model (c). A: The probability of a

correct r Rn as a function of Sn-1 for different Sn. B: The probability of a correct Rn as a function

of Sn-2 for different Sn. C: The probability of a correct Rn as a function of Sn-1 and Sn-2 when Sn =

4. 

Figure 4. Predictions of the Sign and Magnitude MAC Model (d). A: The probability of a

correct Rn as a function of Sn-1 for different Sn. B: The probability of a correct Rn as a function

of Sn-2 for different Sn. C: The probability of a correct Rn as a function of Sn-1 and Sn-2 when Sn =

4. 

Figure 5. The mean proportion of correct Rn as a function of Sn in the Experiment.

Performance has been collapsed across categories (i.e., Sn = 1 represents performance

averaged across Stimuli 1 and 10, Sn = 2 represents performance averaged across Stimuli 2 and

9, and so on). Error bars represent the standard errors of the means. 

Figure 6. Sequential effects in the Experiment. A: The mean proportion of correct Rn as a

function of Sn-1 for different Sn. B: The mean proportion of correct Rn as a function of Sn-2 for

different Sn. Performance has been collapsed across categories. Error bars represent the

standard errors of the means. 

Figure 7. Conditional sequential effects in the Experiment. A: The mean proportion of correct

Rn only when the Sn-1 is sign-useful as a function of Sn-2 for different Sn. B: The mean

proportion of correct Rn only when the Sn-1 is not sign-useful as a function of Sn-2 for different
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Sn. C: The mean proportion of correct Rn only when the Sn-2 is sign-useful as a function of Sn-1

for different Sn. D: The mean proportion of correct Rn only when the Sn-2 is not sign-useful as a

function of Sn-1 for different Sn. 
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Figure 1
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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Figure 7
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