55 research outputs found

    Proteomic analysis of 2,4,6-trinitrotoluene degrading yeast Yarrowia lipolytica

    Get PDF
    © 2017 Khilyas, Lochnit and Ilinskaya. 2,4,6-trinitrotoluene (TNT) is a common component of many explosives. The overproduction and extensive usage of TNT significantly contaminates the environment. TNT accumulates in soils and aquatic ecosystems and can primarily be destroyed by microorganisms. Current work is devoted to investigation of Yarrowia lipolytica proteins responsible for TNT transformation through the pathway leading to protonated Meisenheimer complexes and nitrite release. Here, we identified a unique set of upregulated membrane and cytosolic proteins of Y. lipolytica, which biosynthesis increased during TNT transformation through TNT-monohydride-Meisenheimer complexes in the first step of TNT degradation, through TNT-dihydride-Meisenheimer complexes in the second step, and the aromatic ring denitration and degradation in the last step. We established that the production of oxidoreductases, namely, NADH flavin oxidoreductases and NAD(P)+-dependent aldehyde dehydrogenases, as well as transferases was enhanced at all stages of the TNT transformation by Y. lipolytica. The up-regulation of several stress response proteins (superoxide dismutase, catalase, glutathione peroxidase, and glutathione S-transferase) was also detected. The involvement of intracellular nitric oxide dioxygenase in NO formation during nitrite oxidation was shown. Our results present at the first time the full proteome analysis of Y. lipolytica yeast, destructor of TNT

    The Wnt pathway controls cell death engulfment, spindle orientation, and migration through CED-10/Rac

    Get PDF
    Wnt signalling pathways have extremely diverse functions in animals, including induction of cell fates or tumours, guidance of cell movements during gastrulation, and the induction of cell polarity. Wnt can induce polar changes in cellular morphology by a remodelling of the cytoskeleton. However, how activation of the Frizzled receptor induces cytoskeleton rearrangement is not well understood. We show, by an in depth 4-D microscopy analysis, that the Caenorhabditis elegans Wnt pathway signals to CED-10/Rac via two separate branches to regulate modulation of the cytoskeleton in different cellular situations. Apoptotic cell clearance and migration of the distal tip cell require the MOM-5/Fz receptor, GSK-3 kinase, and APC/APR-1, which activate the CED-2/5/12 branch of the engulfment machinery. MOM-5 (Frizzled) thus can function as an engulfment receptor in C. elegans. Our epistatic analyses also suggest that the two partially redundant signalling pathways defined earlier for engulfment may act in a single pathway in early embryos. By contrast, rearrangement of mitotic spindles requires the MOM-5/Fz receptor, GSK-3 kinase, and beta-catenins, but not the downstream factors LIT-1/NLK or POP-1/Tcf. Taken together, our results indicate that in multiple developmental processes, CED-10/Rac can link polar signals mediated by the Wnt pathway to rearrangements of the cytoskeleton

    Binding of the RNA chaperone Hfq to the type IV pilus base is crucial for its function in Synechocystis sp PCC 6803

    Get PDF
    This work was supported by the DFG priority program SPP1258 Sensory and Regulatory RNAs in Prokaryotes (Wi-2014/3-1, 3-2) to A.W. D.J.N. was supported by a Queen Mary college studentship

    Influence of chronic food deprivation on structure-function relationship of juvenile rat fast muscles

    Get PDF
    In the present study, we analyze the influence of chronic undernutrition on protein expression, muscle fiber type composition, and fatigue resistance of the fast extensor digitorum longus (EDL) muscle of male juvenile rats (45 ± 3 days of life; n = 25 and 31 rats for control and undernourished groups, respectively). Using 2D gel electrophoresis and mass spectrometry, we identified in undernourished muscles 12 proteins up-regulated (8 proteins of the electron transport chain and the glycolytic pathway, 2 cross-bridge proteins, chaperone and signaling proteins that are related to the stress response). In contrast, one down-regulated protein related to the fast muscle contractile system and two other proteins with no changes in expression were used as charge controls. By means of COX and alkaline ATPase histochemical techniques and low-frequency fatigue protocols we determined that undernourished muscles showed a larger proportion (15 % increase) of Type IIa/IId fibers (oxidative- glycolytic) at the expense of Type IIb (glycolytic) fibers (15.5 % decrease) and increased fatigue resistance (55.3 %). In addition, all fiber types showed a significant reduction in their cross-sectional area (slow: 64.4 %; intermediate: 63.9 % and fast: 61.2 %). These results indicate that undernourished EDL muscles exhibit an increased expression of energy metabolic and myofibrillar proteins which are associated with the predominance of oxidative and Type IIa/IId fibers and to a higher resistance to fatigue. We propose that such alterations may act as protective and/or adaptive mechanisms that counterbalance the effect of chronic undernourishment. © 2013 Springer Science+Business Media Dordrecht

    RNase1 prevents the damaging interplay between extracellular RNA and tumour necrosis factor-α in cardiac ischaemia/reperfusion injury

    Get PDF
    © Schattauer 2014 Despite optimal therapy, the morbidity and mortality of patients presenting with an acute myocardial infarction (M1) remain significant, and the initial mechanistic trigger of myocardial “ischaemia/reperfusion (1/R) injury” remains greatly unexplained. Here we show that factors released from the damaged cardiac tissue itself, in particular extracellular RNA (eRNA) and tumour-necrosis-factor α (TNF-α), may dictate 1/R injury. In an experimental in vivo mouse model of myocardial 1/R as well as in the isolated 1/R Langendorff-perfused rat heart, cardiomyocyte death was induced by eRNA and TNF-α. Moreover, TNF-α promoted further eRNA release especially under hypoxia, feeding a vicious cell damaging cycle during 1/R with the massive production of oxygen radicals, mitochondrial obstruction, decrease in antioxidant enzymes and decline of cardiomyocyte functions. The administration of RNase1 significantly decreased myocardial infarction in both experimental models. This regimen allowed the reduction in cytokine release, normalisation of antioxidant enzymes as well as preservation of cardiac tissue. Thus, RNase1 administration provides a novel therapeutic regimen to interfere with the adverse eRNA-TNF-α interplay and significantly reduces or prevents the pathological outcome of ischaemic heart disease

    Neutrophil Extracellular Traps Directly Induce Epithelial and Endothelial Cell Death: A Predominant Role of Histones

    Get PDF
    Neutrophils play an important role in innate immunity by defending the host organism against invading microorganisms. Antimicrobial activity of neutrophils is mediated by release of antimicrobial peptides, phagocytosis as well as formation of neutrophil extracellular traps (NET). These structures are composed of DNA, histones and granular proteins such as neutrophil elastase and myeloperoxidase. This study focused on the influence of NET on the host cell functions, particularly on human alveolar epithelial cells as the major cells responsible for gas exchange in the lung. Upon direct interaction with epithelial and endothelial cells, NET induced cytotoxic effects in a dose-dependent manner, and digestion of DNA in NET did not change NET-mediated cytotoxicity. Pre-incubation of NET with antibodies against histones, with polysialic acid or with myeloperoxidase inhibitor but not with elastase inhibitor reduced NET-mediated cytotoxicity, suggesting that histones and myeloperoxidase are responsible for NET-mediated cytotoxicity. Although activated protein C (APC) did decrease the histone-induced cytotoxicity in a purified system, it did not change NET-induced cytotoxicity, indicating that histone-dependent cytotoxicity of NET is protected against APC degradation. Moreover, in LPS-induced acute lung injury mouse model, NET formation was documented in the lung tissue as well as in the bronchoalveolar lavage fluid. These data reveal the important role of protein components in NET, particularly histones, which may lead to host cell cytotoxicity and may be involved in lung tissue destruction

    Glycan labeling strategies and their use in identification and quantification

    Get PDF
    Most methods for the analysis of oligosaccharides from biological sources require a glycan derivatization step: glycans may be derivatized to introduce a chromophore or fluorophore, facilitating detection after chromatographic or electrophoretic separation. Derivatization can also be applied to link charged or hydrophobic groups at the reducing end to enhance glycan separation and mass-spectrometric detection. Moreover, derivatization steps such as permethylation aim at stabilizing sialic acid residues, enhancing mass-spectrometric sensitivity, and supporting detailed structural characterization by (tandem) mass spectrometry. Finally, many glycan labels serve as a linker for oligosaccharide attachment to surfaces or carrier proteins, thereby allowing interaction studies with carbohydrate-binding proteins. In this review, various aspects of glycan labeling, separation, and detection strategies are discussed

    PAQR-2 may be a regulator of membrane fluidity during cold adaptation

    No full text
    corecore