19 research outputs found

    Lower Limb Radiology of Distal Myopathy due to the S60F Myotilin Mutation

    Get PDF
    Distal myopathies are a clinically and genetically heterogenous group of disorders in which the distal limb musculature is selectively or disproportionately affected. Precisely defining specific categories is a challenge because of overlapping clinical phenotypes, making it difficult to decide which of the many known causative genes to screen in individual cases. In this study we define the distinguishing magnetic resonance imaging findings in myotilin myopathy by studying 8 genealogically unrelated cases due to the same point mutation in TTID. Proximally, the vastii, biceps femoris and semimembranosus were involved with sparing of gracilis and sartorius. Distally, soleus, gastrocnemius, tibialis anterior, extensor hallicus and extensor digitorum were involved. This pattern contrasts with other distal myopathies and provides further support for the role of imaging in the clinical investigation of muscle disease. Copyright (C) 2009 S. Karger AG, Base

    Biallelic ADAM22 pathogenic variants cause progressive encephalopathy and infantile-onset refractory epilepsy

    Get PDF
    Pathogenic variants in A Disintegrin And Metalloproteinase (ADAM) 22, the postsynaptic cell membrane receptor for the glycoprotein leucine-rich repeat glioma-inactivated protein 1 (LGI1), have been recently associated with recessive developmental and epileptic encephalopathy. However, so far, only two affected individuals have been described and many features of this disorder are unknown. We refine the phenotype and report 19 additional individuals harbouring compound heterozygous or homozygous inactivating ADAM22 variants, of whom 18 had clinical data available. Additionally, we provide follow-up data from two previously reported cases. All affected individuals exhibited infantile-onset, treatment-resistant epilepsy. Additional clinical features included moderate to profound global developmental delay/intellectual disability (20/20), hypotonia (12/20) and delayed motor development (19/20). Brain MRI findings included cerebral atrophy (13/20), supported by post-mortem histological examination in patient-derived brain tissue, cerebellar vermis atrophy (5/20), and callosal hypoplasia (4/20). Functional studies in transfected cell lines confirmed the deleteriousness of all identified variants and indicated at least three distinct pathological mechanisms: (i) defective cell membrane expression; (ii) impaired LGI1-binding; and/or (iii) impaired interaction with the postsynaptic density protein PSD-95. We reveal novel clinical and molecular hallmarks of ADAM22 deficiency and provide knowledge that might inform clinical management and early diagnostics. Van der Knoop et al. describe the clinical features of 21 individuals with biallelic pathogenic variants in ADAM22 and confirm the deleteriousness of the variants with functional studies. Clinical hallmarks of this rare disorder comprise progressive encephalopathy and infantile-onset refractory epilepsy.Peer reviewe

    Exon skipping and gene transfer restore dystrophin expression in human induced pluripotent stem cells-cardiomyocytes harboring DMD mutations

    Get PDF
    With an incidence of 1:3,500 to 5,000 in male children, Duchenne muscular dystrophy (DMD) is an X-linked disorder in which progressive muscle degeneration occurs and affected boys usually die in their twenties or thirties. Cardiac involvement occurs in 90% of patients and heart failure accounts for up to 40% of deaths. To enable new therapeutics such as gene therapy and exon skipping to be tested in human cardiomyocytes, we produced human induced pluripotent stem cells (hiPSC) from seven patients harboring mutations across the DMD gene. Mutations were retained during differentiation and analysis indicated the cardiomyocytes showed a dystrophic gene expression profile. Antisense oligonucleotide-mediated skipping of exon 51 restored dystrophin expression to 30% of normal levels in hiPSC-cardiomyocytes carrying exon 47–50 or 48–50 deletions. Alternatively, delivery of a dystrophin minigene to cardiomyocytes with a deletion in exon 35 or a point mutation in exon 70 allowed expression levels similar to those seen in healthy cells. This demonstrates that DMD hiPSC-cardiomyocytes provide a novel tool to evaluate whether new therapeutics can restore dystrophin expression in the heart

    DPAGT1-CDG: Report of Two New Pediatric Patients and Brief Review of the Literature

    No full text
    Introduction: Congenital glycosylation disorders are multisystem diseases with heterogeneous clinical manifestations caused by defects in the synthesis of the glycan moiety of glycoproteins or glycolipids or the binding of glycans to proteins and lipids. DPAGT1 (UDP-GlcNAc: dolichol phosphate N-acetylglucosamine-1-phosphotransferase) is an initiating protein in the biosynthetic pathway of dolichol-linked oligosaccharides required for protein N-glycosylation. Pathogenic variants in DPAGT1 (UDP-GlcNAc: dolichol phosphate N-acetylglucosamine-1-phosphotransferase) gene cause a rare type of congenital glycosylation disorder called DPAGT1-CDG (formerly CDG-Ij) (OMIM #608093). It is a rare autosomal recessive disease or a milder version with congenital myasthenic syndrome known as DPAGT1-CMS. A severe disease course with hypotonia, cataracts, skeletal deformities, resistant epilepsy, intellectual disability, global developmental delay, premature death has been described in most patients with DPAGT1-CDG. Patient Presentation: We describe two patients with variants in the DPAGT1 gene: an 8-month-old boy with a homozygous, missense DPAGT1:c.339T>G (p.Phe113Leu) novel variant and a 13-year-old female patient with compound heterozygous variants, DPAGT1:c.466C>T (p.Arg156Cys, R156C) and DPAGT1:c.161+5G>A. While the 8-month-old patient was diagnosed with congenital cataract at the age of 1 month, had dysmorphic findings, and epilepsy, clinical symptoms in the other patient appeared later but with more prominent muscle weakness, behavioral disorder, dysmorphic findings, and no epilepsy. Discussion: Cholinesterase inhibitor therapy was found to be effective in patients against muscle weakness, supporting DPAGT1 deficiency as the underlying etiology. We started pyridostigmine treatment in our patient with more pronounced muscle weakness, and we saw its benefit. We aimed to present our patients diagnosed with DPAGT1-CDG due to different variants in the same gene and different clinical presentations, treatment and to compare them with other patients in the literature

    Two new protocols to enhance the production and isolation of human induced pluripotent stem cell lines

    Get PDF
    AbstractThere are two critical stages in the retroviral reprogramming of somatic cells to produce human induced pluripotent stem cell (hiPSC) lines. One is the production of high titer virus required to reprogram somatic cells; the other is identification of true hiPSC colonies from heterogeneous cell populations, and their isolation and expansion to generate a sustainable, pluripotent stem cell line. Here we describe simple, time-saving methods to address the current difficulties at these two critical junctures. First, we have developed a method to increase the number of infectious viral units 600-fold. Second, we have developed a TRA-1-81-based positive selection column method for isolating “true” hiPSCs from the heterogeneous cell populations, which overcomes the labor-intensive and highly subjective method of manual selection of hiPSC colonies. We have used these techniques to produce 8 hiPSC lines from human fibroblasts and we believe that they are of considerable utility to researchers in the hiPSC field

    In vitro supplementation with dAMP/dGMP leads to partial restoration of mtDNA levels in mitochondrial depletion syndromes

    No full text
    Mitochondrial DNA depletion syndrome, a frequent cause of childhood (hepato)encephalomyopathies, isdefined as a reduction of mitochondrial DNA copy number related to nuclear DNA. It was previouslyshown that mtDNA depletion can be prevented by dAMP/dGMP supplementation in deoxyguanosinekinase-deficient fibroblasts. We investigated myotubes of patients diagnosed with mtDNA depletion carryingpathogenic mutations in DGUOK, POLG1 (Alpers syndrome) and TYMP. Differentiating myotubes of allpatients and controls were supplemented with different doses of dAMP/dGMP or dAMP/dGMP/dCMP inTYMP deficiency, and analysed for mtDNA/nDNA ratio and for cytochrome c oxidase (COX) activity. Serumdeprivation and myotube formation triggered a decrease in mtDNA copy number in DGUOK or POLG1deficient myotubes, but not in TYMP deficiency and healthy controls. Supplementation with dAMP/dGMPleads to a significant and reproducible rescue of mtDNA depletion in DGUOK deficiency. POLG1 deficientmyotubes also showed a mild, not significant increase in mtDNA copy number. MtDNA depletion did notresult in deficient COX staining in DGUOK and POLG1-deficient myotubes. Treatment with ethidium bromideresulted in very severe depletion and absence of COX staining in all cell types, and no recovery was observedafter supplementation with dAMP/dGMP. We show that supplementation with dAMP/dGMP increases mtDNAcopy number significantly in DGUOK deficient myotubes and, leads to a mild, non-significant improvement ofmtDNA depletion in POLG1 deficiency. No adverse effect on mtDNA copy number was observed on high-dosesupplementation in vitro. Further studies are needed to determine possible therapeutic implications of dAMP/dGMP supplementation for DGUOK deficiency in vivo

    Long-term follow-up in patients with congenital myasthenic syndrome due to CHAT mutations

    No full text
    Background: Congenital myasthenic syndromes (CMSs) are a group of clinically and genetically heterogeneous inherited disorders of the neuromuscular junction. Mutations in the acetylcholine transferase (CHAT) gene cause a pre-synaptic CMS, typically associated with episodic apnoea and worsening of myasthenic symptoms during crises caused by infections, fever or stress. Between crises symptoms may be mild and variable. Acetylcholinesterase inhibitor therapy is reported to improve clinical symptoms and reduce crises

    Mutations in the collagen XII gene define a new form of extracellular matrix-related myopathy

    No full text
    Bethlem myopathy (BM) [MIM 158810] is a slowly progressive muscle disease characterized by contractures and proximal weakness, which can be caused by mutations in one of the collagen VI genes (COL6A1, COL6A2 and COL6A3). However, there may be additional causal genes to identify as in 50 of BM cases no mutations in the COL6 genes are identified. In a cohort of 24 patients with a BM-like phenotype, we first sequenced 12 candidate genes based on their function, including genes for known binding partners of collagen VI, and those enzymes involved in its correct post-translational modification, assembly and secretion. Proceeding to whole-exome sequencing (WES), we identified mutations in the COL12A1 gene, a member of the FACIT collagens (fibril-associated collagens with interrupted triple helices) in five individuals from two families. Both families showed dominant inheritance with a clinical phenotype resembling classical BM. Family 1 had a single-base substitution that led to the replacement of one glycine residue in the triple-helical domain, breaking the Gly-X-Y repeating pattern, and Family 2 had a missense mutation, which created a mutant protein with an unpaired cysteine residue. Abnormality at the protein level was confirmed in both families by the intracellular retention of collagen XII in patient dermal fibroblasts. The mutation in Family 2 leads to the up-regulation of genes associated with the unfolded protein response (UPR) pathway and swollen, dysmorphic rough-ER. We conclude that the spectrum of causative genes in extracellular matrix (ECM)-related myopathies be extended to include COL12A1
    corecore