5,564 research outputs found

    A Compendium of Brazed Microstructures For Fission Power Systems Applications

    Get PDF
    NASA has been supporting design studies and technology development for fission-based power systems that could provide power to an outpost on the Moon, Mars, or an asteroid. Technology development efforts have included fabrication and evaluation of components used in a Stirling engine power conversion system. This investigation is part of the development of several braze joints crucial for the heat exchanger transfer path from a hot-side heat exchanger to a Stirling engine heat acceptor. Dissimilar metal joints are required to impart both mechanical strength and thermal path integrity for a heater head of interest. Preliminary design work for the heat exchanger involved joints between low carbon stainless steel to Inconel 718, where the 316L stainless steel would contain flowing liquid metal NaK while Inconel 718, a stronger alloy, would be used as structural reinforcement. This paper addressed the long-term microstructural stability of various braze alloys used to join 316L stainless steel heater head to the high conductivity oxygen-free copper acceptor to ensure the endurance of the critical metallic components of this sophisticated heat exchanger. The bonding of the 316L stainless steel heater head material to a copper heat acceptor is required to increase the heat-transfer surface area in contact with flowing He, which is the Stirling engine working fluid

    Molecular characterization of a phytoplasma causing phyllody in clover and other herbaceous hosts in northern Italy

    Get PDF
    Red clover (Trifolium pratense) and Ladino clover (Trifolium repens) plants showing phytoplasma-associated symptoms (yellowing/reddening, virescence and phyllody) have been recovered in Friuli-Venezia Giulia, Italy. Using AluI RFLP analysis of PCR amplified 16S rDNA we showed that the disease can be caused independently by two phylogenetically distinct phytoplasmas. One of them showed the very typical 16S rDNA RFLP pattern of the agent of Clover Phyllody in Canada (CCPh). The 16S rDNA of the other phytoplasma (Italian Clover Phyllody phytoplasma, ICPhp) has been PCR amplified, cloned and sequenced. The sequence revealed high similarity (>98%) with phytoplasmas belonging to the X disease cluster, which includes organisms not reported to cause phyllody on their hosts. The analysis by AluI RFLP of the PCR amplified pathogen 16S rDNA from other herbaceous plants (Crepis biennis, Taraxacum officinale, Leucanthemum vulgare) collected nearby with phytoplasma-associated symptoms showed similar patterns. Southern blot hybridization of their EcoRI digested total DNA revealed identical RFLP patterns, suggesting that the causative agent may be the same organism

    Development of High Temperature Dissimilar Joint Technology for Fission Surface Power Systems

    Get PDF
    NASA is developing fission surface power (FSP) system technology as a potential option for use on the surface of the moon or Mars. The goal is to design a robust system that takes full advantage of existing materials data bases. One of the key components of the power conversion system is the hot-side Heat Exchanger (HX). One possible design for this heat exchanger requires a joint of the dissimilar metals 316L stainless steel and Inconel 718, which must sustain extended operation at high temperatures. This study compares two joining techniques, brazing and diffusion bonding, in the context of forming the requisite stainless steel to superalloy joint. The microstructures produced by brazing and diffusion bonding, the effect of brazing cycle on the mechanical tensile properties of the alloys, and the strength of several brazed joints will be discussed

    A Comparison Between Growth Morphology of Eutectic Cells/Dendrites and Single-Phase Cells/Dendrites

    Get PDF
    Directionally solidified (DS) intermetallic and ceramicbased eutectic alloys with an in-situ composite microstructure microstructure containing finely distributed, long aspect ratio, fiber, or plate reinforcements are being seriously examined for several advanced aero-propulsion applications. In designing these alloys, additional solutes need to be added to the base eutectic composition in order to improve their high temperature strength, and provide for adequate toughness and resistance to environmental degradation. Solute addition, however, promotes instability at the planar liquid-solid interface resulting in the formation of two-phase eutectic “colonies.”[1–4] Because morphology of eutectic colonies is very similar to the single-phase cells and dendrites, the stability analysis of Mullins and Sekerka[5] has been extended to describe their formation.[6,7,8] Onset of their formation shows a good agreement with this approach;[9] however, unlike the single-phase cells and dendrites, there is limited examination of their growth speed dependence of spacing, morphology, and spatial distribution.[4,10–11] The purpose of this study is to compare the growth speed dependence of the morphology, spacing, and spatial distribution of eutectic cells and dendrites with that for the single-phase cells and dendrites

    Intrahepatic persistent fetal right umbilical vein: a retrospective study

    Get PDF
    Introduction: To appraise the incidence and value of intrahepatic persistent right umbilical vein (PRUV). Methods: This was a single-center study. Records of all women with a prenatal diagnosis of intrahepatic PRUV were reviewed. The inclusion criteria were women with gestational age greater than 13 weeks of gestation. Exclusion criteria were fetuses with situs abnormalities, due to the hepatic venous ambiguity, and extrahepatic PRUV. The primary outcome was the incidence of intrahepatic PRUV in our cohort. The secondary outcomes were associated malformations. Results: 219/57,079 cases (0.38%) of intrahepatic PRUV were recorded. The mean gestational age at diagnosis was 21.8 ± 2.9 weeks of gestations. PRUV was isolated in the 76.7%, while in 23.3% was associated with other major or minor abnormalities. The most common associated abnormalities were cardiovascular abnormalities (8.7%), followed by genitourinary abnormalities (6.4%), skeletal abnormalities (4.6%), and central nervous system abnormalities (4.1%). Within the cardiovascular abnormalities, the most common one was ventricular septal defect (six cases). Conclusion: In most cases PRUV is an isolated finding. Associated minor or major malformations are presented in the 23.3% of the cases, so this finding should prompt detailed prenatal assessment of the fetus, with particular regard to cardiovascular system

    LCF Life of NiCr-Y Coated Disk Alloys After Shot Peening, Oxidation and Hot Corrosion

    Get PDF
    In a prior companion study (Ref. 1), three different Ni-Cr coating compositions (29, 35.5, 45 wt% Cr) were applied at two thicknesses by Plasma Enhanced Magnetron Sputtering (PEMS) to two similar Ni-based disk alloys. One coating also received a thin ZrO2 overcoat. The low cycle fatigue (LCF) life of each coating was determined at 760 C and was less than that of the uncoated specimens. In this followon effort, shot peening was examined as a means to improve the as-deposited coating morphology as well as impart a residual compressive stress in the near-surface region. After evaluating the effect of the shot peening on the LCF life, the effectiveness of the shot-peened coating in protecting the disk alloy from oxidation and hot corrosion attack was evaluated. This evaluation was accomplished by exposing coated and shot-peened specimens to 500 h of oxidation followed by 50 h of hot corrosion, both at 760 C in air. These exposed specimens were then tested in fatigue and compared to similarly treated and exposed uncoated specimens. For all cases, shot peening improved the LCF life of the coated specimens. More specifically, the highest Cr coating showed the best LCF life of the coated specimens after shot peening, as well as after the environmental exposures. Characterization of the coatings after shot peening, oxidation, hot corrosion and LCF testing is presented and discussed

    The Oxidation and Protection of Gamma Titanium Aluminides

    Get PDF
    The excellent density-specific properties of the gamma class of titanium aluminides make them attractive for intermediate-temperature (600-850 C) aerospace applications. The oxidation and embrittlement resistance of these alloys is superior to that of the alpha(sub 2) and orthorhombic classes of titanium aluminides. However, since gamma alloys form an intermixed Al2O3/TiO2 scale in air rather than the desired continuous Al2O3 scale, oxidation resistance is inadequate at the high end of this temperature range (i.e., greater than 750-800 C). For applications at such temperatures, an oxidation-resistant coating will be needed; however, a major drawback of the oxidation-resistant coatings currently available is severe degradation in fatigue life by the coating. A new class of oxidation-resistant coatings based in the Ti-Al-Cr system offers the potential for improved fatigue life

    The ‘ForensOMICS’ approach for postmortem interval estimation from human bone by integrating metabolomics, lipidomics, and proteomics

    Get PDF
    The combined use of multiple omics allows to study complex interrelated biological processes in their entirety. We applied a combination of metabolomics, lipidomics and proteomics to human bones to investigate their combined potential to estimate time elapsed since death (i.e., the postmortem interval [PMI]). This 'ForensOMICS' approach has the potential to improve accuracy and precision of PMI estimation of skeletonized human remains, thereby helping forensic investigators to establish the timeline of events surrounding death. Anterior midshaft tibial bone was collected from four female body donors before their placement at the Forensic Anthropology Research Facility owned by the Forensic Anthropological Center at Texas State (FACTS). Bone samples were again collected at selected PMIs (219-790-834-872days). Liquid chromatography mass spectrometry (LC-MS) was used to obtain untargeted metabolomic, lipidomic, and proteomic profiles from the pre- and post-placement bone samples. The three omics blocks were investigated independently by univariate and multivariate analyses, followed by Data Integration Analysis for Biomarker discovery using Latent variable approaches for Omics studies (DIABLO), to identify the reduced number of markers describing postmortem changes and discriminating the individuals based on their PMI. The resulting model showed that pre-placement metabolome, lipidome and proteome profiles were clearly distinguishable from post-placement ones. Metabolites in the pre-placement samples suggested an extinction of the energetic metabolism and a switch towards another source of fuelling (e.g., structural proteins). We were able to identify certain biomolecules with an excellent potential for PMI estimation, predominantly the biomolecules from the metabolomics block. Our findings suggest that, by targeting a combination of compounds with different postmortem stability, in the future we could be able to estimate both short PMIs, by using metabolites and lipids, and longer PMIs, by using proteins

    Material Studies Related to the Use of NaK Heat Exchangers Coupled to Stirling Heater Heads

    Get PDF
    NASA has been supporting design studies and technology development that could provide power to an outpost on the Moon, Mars, or an asteroid. Technology development efforts have included fabrication and evaluation of components used in a Stirling engine power conversion system. Destructive material evaluation was performed on a NaK shell heat exchanger that was developed by the NASA Glenn Research Center (GRC) and integrated with a commercial 1 kWe Stirling convertor from Sunpower Incorporated. The NaK Stirling test demonstrated Stirling convertor electrical power generation using a pumped liquid metal heat source under thermal conditions that represent the heat exchanger liquid metal loop in a Fission Power Systems (FPS) reactor. The convertors were operated for a total test time of 66 hr at a maximum temperature of 823 K. After the test was completed and NaK removed, the heat exchanger assembly was sectioned to evaluate any material interactions with the flowing liquid metal. Several dissimilar-metal braze joint options, crucial for the heat exchanger transfer path, were also investigated. A comprehensive investigation was completed and lessons learned for future heat exchanger development efforts are discussed

    Effect of Exposure on the Mechanical Properties of Gamma MET PX

    Get PDF
    The effect of a service environment exposure on the mechanical properties of a high Nb content TiAl alloy, Gamma MET PX , was assessed. Gamma MET PX, like other TiAl alloys, experiences a reduction of ductility following high temperature exposure. Exposure in Ar, air, and high-purity oxygen all resulted in a loss of ductility with the ductility reduction increasing with oxygen content in the exposure atmosphere. Embrittling mechanisms, including bulk microstructural changes, moisture induced environmental embrittlement, and near surface effects were investigated. The embrittlement has been shown to be a near-surface effect, most likely due to the diffusion of oxygen into the alloy
    corecore