12 research outputs found

    High performance computing for a 3-D optical diffraction tomographic application in fluid velocimetry

    Get PDF
    Optical Diffraction Tomography has been recently introduced in fluid velocimetry to provide three dimensional information of seeding particle locations. In general, image reconstruction methods at visible wavelengths have to account for diffraction. Linear approximation has been used for three-dimensional image reconstruction, but a non-linear and iterative reconstruction method is required when multiple scattering is not negligible. Non-linear methods require the solution of the Helmholtz equation, computationally highly demanding due to the size of the problem. The present work shows the results of a non-linear method customized for spherical particle location using GPU computing and a made-to-measure storing format

    Versatile hollow fluorescent metal-silica nanohybrids through a modified microemulsion synthesis route

    Get PDF
    Silica-metal nanohybrids are common materials for applications in biomedicine, catalysis or sensing. Also, hollow structures are of interest as they provide additional useful features. However, in these materials the control of the size and accessibility to the inner regions of the structure usually requires complex synthesis procedures. Here we report a simple colloidal procedure for synthesizing hollow silica-metal nanohybrids, driven by the diffusion of metal precursors through the porous silica shell and subsequent reduction in aqueous solutions. The formation of hollow nanoparticles is controlled by the colloidal conditions during synthesis, which affect the ripening of hollow nanoparticles in presence of organosilanes. The modification of the conditions during synthesis affected the growth of silica precursors in presence of fluorescein isothiocyanate (FITC). The limited access to water molecules during the hydrolysis of silica precursors is attributed to the hydrophobicity of organic fluorescent molecules linked to the condensing silica clusters at the initial stages of nanoparticle formation and to the limitation of water content in the microemulsion method used. Finally, the growth of metal nanoseeds at the core of hollow nanoparticles can be easily achieved though a simple method in aqueous environment. The pH and thermal conditions during the reduction process affect the formation of metal-silica nanohybrids and their structural features

    Fast and simple assessment of surface contamination in operations involving nanomaterials

    Get PDF
    The deposition of airborne nanosized matter onto surfaces could pose a potential risk in occupational and environmental scenarios. The incorporation of fluorescent labels, namely fluorescein isotiocyanate (FITC) or tris-1, 3-phenanthroline ruthenium (II) chloride (Ru(phen)3Cl2), into spherical 80-nm silica nanoparticles allowed the detection after the illumination with LED light of suitable wavelength (365 or 405 nm respectively). Monodisperse nanoparticle aerosols from fluorescently labeled nanoparticles were produced under safe conditions using powder generators and the deposition was tested into different surfaces and filtering media. The contamination of gloves and work surfaces that was demonstrated by sampling and SEM analysis becomes immediately clear under laser or LED illumination. Furthermore, nanoparticle aerosols of about 105 nanoparticles/cm3 were alternatively fed through a glass pipe and personal protective masks to identify the presence of trapped nanoparticles under 405 nm or 365 nm LED light. This testing procedure allowed a fast and reliable estimation of the contamination of surfaces with nanosized matter, with a limit of detection based on the fluorescence emission of the accumulated solid nanoparticles of 40 ng of Ru(phen)3@SiO2 of silica per mg of non-fluorescent matter

    Excipient-free inhalable microparticles of Azithromycin produced by electrospray: A novel approach to direct pulmonary delivery of antibiotics

    Get PDF
    Inhalation therapy offers several advantages in respiratory disease treatment. Azithromycin is a macrolide antibiotic with poor solubility and bioavailability but with a high potential to be used to fight lung infections. The main objective of this study was to generate a new inhalable dry powder azithromycin formulation. To this end, an electrospray was used, yielding a particle size around 2.5 µm, which is considered suitable to achieve total deposition in the respiratory system. The physicochemical properties and morphology of the obtained microparticles were analysed with a battery of characterization techniques. In vitro deposition assays were evaluated after aerosolization of the powder at constant flow rate (100 L/min) and the consideration of the simulation of two different realistic breathing profiles (healthy and chronic obstructive pulmonary disease (COPD) patients) into a next generation impactor (NGI). The formulation was effective in vitro against two types of bacteria, Staphylococcus aureus and Pseudomonas aeruginosa. Finally, the particles were biocompatible, as evidenced by tests on the alveolar cell line (A549) and bronchial cell line (Calu-3). © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Tuning alginate microparticle size via atomization of non-newtonian fluids

    Get PDF
    A new approach based on the atomization of non-Newtonian fluids has been proposed to produce microparticles for a potential inhalation route. In particular, different solutions of algi-nate were atomized on baths of different crosslinkers, piperazine and barium chloride, obtaining microparticles around 5 and 40 microns, respectively. These results were explained as a consequence of the different viscoelastic properties, since oscillatory analysis indicated that the formed hydrogel beads with barium chloride had a higher storage modulus (1000 Pa) than the piperazine ones (20 Pa). Pressure ratio (polymer solution-air) was identified as a key factor, and it should be from 0.85 to 1.00 to ensure a successful atomization, obtaining the smallest particle size at intermediate pressures. Finally, a numerical study based on dimensionless numbers was performed to predict particle size depending on the conditions. These results highlight that it is possible to control the microparticles size by modifying either the viscoelasticity of the hydrogel or the experimental conditions of atom-ization. Some experimental conditions (using piperazine) reduce the particle size up to 5 microns and therefore allow their use by aerosol inhalation. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Correction: Entrainment of nanosized clusters from a nanopowder fluidized bed

    Get PDF
    The article by Andrea Fabre et al. (Environ. Sci.: Nano, 2017, 4, 670–678) was published with an incorrect title (‘Modeling thesize distribution in a fluidized bed of nanopowder’). The correct article title is ‘Entrainment of nanosized clusters from a nanopowder fluidized bed’.FWN – Publicaties zonder aanstelling Universiteit Leide

    Modeling the size distribution in a fluidized bed of nanopowder

    No full text
    The release of nanosized particles from fluidized beds of ceramic oxide nanopowders, namely, TiO2 (P25), Al2O3 (AluC) and SiO2 (A130) has been assessed for the first time. Previous models and experiments for processing engineered nanoparticles (ENP) using fluidized beds reported only the formation of micron-sized cluster agglomerates in the gas phase. In this work, aerosol spectrometry techniques such as scanning mobility particle sizing (SMPS) and optical particle counting (OPC) have been combined with powder technologies, such as the borescope high-speed camera system, to determine the particle size distribution from 5 nm to 1 mm above a fluidized bed. Furthermore, the morphology of nanoparticulate aerosol at different locations in the bed was determined by offline electron microscopy. The results demonstrate that free nano- and micron-sized particles are released from fluidized beds. Since the structures found above the bed are also expected to be present within fluidized beds, a revision of existing nanoparticle fluidization models, and improved safety and control measures in reactors for gas-phase ENP processing are needed to avoid nanoparticle release.FWN – Publicaties zonder aanstelling Universiteit Leide
    corecore