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ABSTRACT  

Silica-metal nanohybrids are common materials for applications in biomedicine, catalysis or 

sensing. Also, hollow structures are of interest as they provide additional useful features. 

However, in these materials the control of the size and accessibility to the inner regions of the 

structure usually requires complex synthesis procedures. Here we report a simple colloidal 

procedure for synthesizing hollow silica-metal nanohybrids, driven by the diffusion of metal 

precursors through the porous silica shell and subsequent reduction in aqueous solutions. The 

formation of hollow nanoparticles is controlled by the colloidal conditions during synthesis, 

which affect the ripening of hollow nanoparticles in presence of organosilanes. The 

modification of the conditions during synthesis affected the growth of silica precursors in 

presence of fluorescein isothiocyanate (FITC). The limited access to water molecules during 

the hydrolysis of silica precursors is attributed to the hydrophobicity of organic fluorescent 

molecules linked to the condensing silica clusters at the initial stages of nanoparticle 

formation and to the limitation of water content in the microemulsion method used. Finally, 

the growth of metal nanoseeds at the core of hollow nanoparticles can be easily achieved 

though a simple method in aqueous environment. The pH and thermal conditions during the 

reduction process affect the formation of metal-silica nanohybrids and their structural features.  
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INTRODUCTION 

The potential of nanotechnology for transforming the scientific and industrial world 

along with our everyday life is already a matter of fact [1,2]. New fabrication procedures are 

being investigated for the development of new nanomaterials with numerous applications 

[3,4]. Of especial interest are nanocomposites and nanohybrids [5,6], which show unique 

properties with applications in catalysis [7,8], medicine [9], sensing [10], energy storage [11] 

or photonics [12], to cite a few. Furthermore, using specific fluorescent markers, these hybrid 

nanomaterials have proven their utility as tracers for risk assessment in nanosafety 

applications [13-15]. 

The silica-metal nanohybrids combine the chemical activity of metal clusters with a 

versatile nanoscale silica shell [16-20]. These have been loaded with drug molecules to obtain 

efficient smart-responsive drug delivery systems [21] or with luminescent moieties to produce 

light-reactive nanoparticles [22] as well as with superparamagnetic iron oxides to enable 

magnetic response [16,23]. The extraordinary thermal and chemical stability, high 

hydrophilicity and biocompatibility of the silica matrix have allowed further applications in 

other areas [24]. 

The synthesis of nanohybrids is considered a laborious procedure, difficult to be scaled 

up and prone to reproducibility problems [25,26]. Conventional synthesis methods involve the 

formation of voids within solid nanoparticles and further incorporation of small metallic 

clusters into cavities [27] or by means of sacrificial cores enclosed in a solid shell [28,29]. 

Other procedures based in the Ostwald ripening have been also reported to produce core-shell 

structures in a variety of compositions [30]. For the synthesis of silica nanohybrids, the Stöber 

method is usually the reference procedure [31,32]. Microemulsion methods have been 

proposed to produce complete nanoscale shells, which show excellent control in the surface 

hydroxylation [33]. Yet, the synthesis of functional silica-metal nanohybrids with narrow 

particle size distributions remains a great challenge [34]. 
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Here we report a novel procedure to synthesize fluorescent hollow silica-metal 

nanohybrids. To this end, monodisperse fluorescent silica nanoparticles were synthesized in a 

water-in-oil microemulsion and further stabilized in anhydrous ethanol. To shed light on the 

process of formation of hollow nanostructures, we have tested the influence of several 

parameters, namely ionic strength, pH, temperature, and reagent concentration. Under the 

appropriate conditions, fluorescent silica-metal nanohybrids have been obtained by secondary 

processing of the hollow nanostructures in aqueous solutions of the suitable metal precursors. 

 

EXPERIMENTAL SECTION 

Reagents 

Tetraethyl orthosilicate (TEOS, 98%, Aldrich, St. Louis MO), 3-aminopropyl 

ethoxysilane (APTES, 99%, Aldrich), ethanol (EtOH, 99%, Aldrich), cyclohexane (99%, 

Aldrich), n-hexanol (99%, Aldrich), polyethylene glycol p-(1,1,3,3-tetramethylbutyl)-phenyl 

ether (Triton X-100, 99%, Aldrich), 3-(trihydroxysilyl)propyl methylphosphonate (THPMP, 

42%, Aldrich) and benzyl alcohol (BzOH, Aldrich) were used as received. Milli-Q® grade 

water (Millipore, Billerica MA) and ammonium hydroxide (NH4OH, 25-28% solution in 

water, Aldrich) were used for the hydrolysis of silicate precursors. Fluorescein 6-

isothiocyanate (FITC, 99%, Aldrich) was used without previous purification. Gold (III) 

chloride trihydrate (HAuCl4·3H2O, ≥ 49.0% Au basis, Aldrich), hydrogen hexachloroplatinate 

(IV) hexahydrate (H2PtCl6·6H2O, ≥ 37.5% Pt basis, Aldrich) and silver nitrate (AgNO3, 

Aldrich) were used as metal sources, along with sodium borohydride (NaBH4, Aldrich) as 

reducing reagent. 

 

Synthesis of monodisperse fluorescent metal-silica nanohybrids 

Monodisperse fluorescent silica (F-SiO2) nanoparticles were synthesized by modified 

single emulsion method at room temperature [35]. Typically, a water-in-oil (w/o) 

microemulsion was prepared by dissolving a cyclohexane/Triton X-100/n-hexanol/water 
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mixture with a molar ratio 25.4/1/4.5/6.7. On the other hand, a fluorescent silicate precursor 

was synthesized by dissolving 5.7 mg of FITC in 1 ml of ethanol. A volume of 73 µl of 

APTES was added under Ar atmosphere at 25ºC to the FITC solution and the mixture was 

stirred in dark during 12 h to obtain FITC-APTES conjugate where fluorescein was grafted to 

the organoalkoxysilane through thiourea bonds. Finally, F-SiO2 nanoparticles were prepared 

by adding 100 μl of the FITC-APTES conjugate to the microemulsion under vigorous stirring, 

followed by the consecutive addition after 10 min of 100 µl of TEOS and 100 µl of NH4OH. 

After stirring for 30 min, 15 µl of THPMP was added and the mixture was kept for 24 h under 

stirring in dark at 25ºC. The F-SiO2 nanoparticles were then precipitated and washed using 

several cycles of centrifugation (104 rpm, 10 min), re-suspension in EtOH and ultrasonic 

dispersion (80 W, 2 min) to remove the reagent excess. The F-SiO2 nanoparticles were finally 

stabilized in EtOH and stored for further treatments. Hollow fluorescent FH-SiO2 

nanoparticles were obtained by centrifugation (104 rpm, 10 min) of F-SiO2 nanoparticles and 

re-suspension in Milli-Q® deionized water up to a concentration of 1 mg/ml. The FH-SiO2 

nanoparticles were then kept in water under dark conditions at 25ºC for several periods, 

solution temperatures and pH conditions to form the inner void.  

The ethanol-stabilized F-SiO2 nanoparticles were eventually re-suspended in 1-mM 

aqueous solutions of silver, gold and platinum precursors for five days under dark conditions 

at 25ºC. An excess of NaBH4 (molar ratio 4 BH4
– / SiO2) was subsequently added under 

vigorous stirring to the suspension. Finally, metal-containing FH-SiO2 nanohybrids were 

separated by centrifugation (104 rpm, 15 min) and the resulting pellet was washed with a 1:1 

H2O/EtOH solution. This procedure was repeated twice for every M@SiO2 (M = Ag, Au and 

Pt) nanohybrid and finally stabilized in EtOH for further analysis. The overall synthesis 

process that led to hollow fluorescent SiO2 and M@SiO2 nanoparticles was schematized in 

Figure 1. 
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Figure 1. Scheme of the water-in-oil (W/O) microemulsion synthesis of F-SiO2 nanoparticles 

and the subsequent synthesis of hollow fluorescent FH-SiO2 nanoparticles and M@SiO2 

nanohybrids (M = Pt, Ag and Au) 

 

Characterization 

Textural properties were measured by N2 adsorption at 77 K (TriStar 3000 V6.08, 

Micromeritics Corp., Noncross, GA). Assuming loosely attached nanoparticle agglomerates 

with some degree of surface texture [36], the presence of both interparticle and intraparticle 

mesopores was determined by means of a non-linear density functional theory (NLDFT) 

model to the N2 adsorption branch of the isotherms (see ESM for details). The morphology of 

the synthesized nanoparticles was assessed by means of electron microscopy techniques. 

Transmission electron microscopy (TEM) images were taken in a Tecnai T20 (FEI Co, 

Hillsboro OR) microscope at a 200 kV. Particle size distributions were obtained from 

statistical analysis of TEM images using the Image-J processing software with a number of 

measured particles (N) larger than 75 in every image. Scanning transmission electron 

microscopy (STEM) images were collected in a Tecnai F30 (FEI Co) microscope at 80 kV. 

For Z-contrast imaging of FH-SiO2 and M@FH-SiO2 nanoparticles, the high angle annular 

dark field (HAADF) technique was used, consisting in a STEM detector with a large inner 

radius that avoided the Bragg scattering intensity and ensuring that transmission intensity was 

roughly proportional to (Z2) [37]. Dynamic light scattering (DLS) measurements were 

performed in a Brookhaven 90Plus (Brookhaven Instruments Inc., New Jersey NJ) to 

determine the hydrodynamic diameter of the fluorescent hollow silica nanoparticles in water 
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suspension. The fluorescence emission of F-SiO2, FH-SiO2 and M@FH-SiO2 nanoparticles 

was recorded in a Perkin-Elmer LS45 (Perkin-Elmer Inc, Waltham MA) spectrophotometer. 

The absorption and emission wavelengths were 490 and 516 nm respectively with a scan 

speed of 100 nm/min and a 7.5 nm grid monochromator. Ultraviolet and visible spectra (UV-

vis) were measured in an Agilent 8453 (Agilent Technologies, Santa Clara CA) equipped 

with W and D2 lamps for both visible and ultraviolet spectra. The surface metal-to-silicon 

atomic ratio of the M@FH-SiO2 nanoparticles was analyzed using X-ray photoelectron 

spectroscopy (XPS) in a Kratos AXIS Ultra DLD (Kratos Analytical, Manchester, UK) 

system operating with the monochromatic Al Ka beam at 1466 eV. Proton nuclear magnetic 

resonance (1H-NMR) spectra were alternatively recorded using Avance-400 and Avance-500 

spectrometers (Bruker Corporation, Billerica MA). 

 

RESULTS AND DISCUSSION 

The synthesis of nanohybrids started from uniform fluorescent silica nanoparticles (F-

SiO2) with an average particle size of 60 ± 2 nm. These were obtained using in a w/o 

microemulsion method followed by stabilization in anhydrous ethanol (Figure 2a). This 

suspension was further processed in deionized water to produce fluorescent hollow 

nanoparticles (FH-SiO2) with a spherical shape and a narrow particle size distribution (Figure 

2b). The immersion of F-SiO2 nanoparticles in aqueous solutions containing metal ions and 

subsequent reduction led to the formation of silica-metal nanohybrids with diverse 

morphologies, from metal-filled Au@SiO2 nanoparticles (Figure 2c) to Ag@SiO2 and 

Pt@SiO2 nanorattles (Figures 2d and e). Average silica nanoparticle size was constant during 

the process leading to nanohybrids. Interestingly, the process to form FH-SiO2 nanoparticles 

only seems to have an effect the inner part of the nanoparticle. The STEM tomography profile 

(Figure 3) showed that the core of FH-SiO2 nanoparticles displayed a reduced density that was 

attributed to the formation of hollow structures that did not affect the shell walls. 
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Figure 2. (a) TEM images of (a) the F-SiO2 upon microemulsion synthesis and stabilization in 

EtOH, (b) FH-SiO2 nanoparticles obtained after 5 d in water at 25ºC; (c) Au@SiO2, (d) 

Ag@SiO2 and (e) Pt@SiO2 nanohybrids obtained by immersion of F-SiO2 in 1-mM aqueous 

solutions of AgNO3, HAuCl4 and H2PtCl6 at 25ºC for 5 d in dark and subsequent reduction with 

NaBH4 at 25ºC. 

 

 

Figure 3. High-angle annular dark field (HAADF) STEM tomography image (a) and electron 

density profile (b) of a typical FH-SiO2 nanoparticle obtained after water aging for 5 d in dark 

at pH 7. The density profile in (b) was obtained along the straight line shown in (a) to prove 

the decrease in the electron intensity in the core as a consequence of the hollowing process. 
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The N2 gas adsorption analysis confirmed the formation of void frameworks, as well as 

the value of BET surface area of the FH-SiO2, which was more than double than that obtained 

for F-SiO2 (Table 1) and for conventional Stöber-like SiO2 nanoparticles (about 20 m2/g). The 

H1 hysteresis loop of the isotherm for FH-SiO2 and the steep decline around p/p* = 0.5 in 

desorption branch suggested the formation bottleneck mesopores in the nanoparticle surface 

(Figure 4) [38]. The estimated size of the interparticle gaps was slightly larger in F-SiO2 than 

in FH-SiO2, where intraparticle pores reached values around 1.5 nm. These could be 

responsible for an efficient water transport into the core, leading to the formation of inner 

voids. 

 

Table 1. Textural properties of the ethanol-stabilized fluorescent silica nanoparticles (F-SiO2) 

and water-treated in dark for 5 d at 25ºC (FH-SiO2) obtained by N2 adsorption 

Sample SBET
† (m2/g) VT

‡ (cm3/g) Dgap
§ (nm) DP

§ (nm) 

F-SiO2 129 0.17 58 1.2 

FH-SiO2 293 0.33 51 1.4 

†SBET, Surface area calculated based on the BET model between p/p* 0.05 and 0.3; ‡VT, total 

pore volume at p/p* = 0.99; §Dgap, interparticle gap and DP, intraparticle mesopore diameter 

from NLDFT model at the adsorption branch of the isotherm. 
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Figure 4. (a) N2 gas adsorption isotherms and (b) NLDFT pore size distributions of F-SiO2 

and FH-SiO2 nanoparticles showing the increase in the adsorption volume after keeping SiO2 

nanoparticles in water in dark for 5 d at 25ºC. The long hysteresis loop in FH-SiO2 isotherm 

pointed out the formation of bottleneck mesopores, whereas the pore size distribution the 

formation of both inter and intraparticulate mesopores. 

 

A series of experiments were carried out to determine the influence of the water in the 

formation of the hollow structure and further nanohybrid synthesis. For the sake of clarity, the 

unabridged experimental details and additional TEM images are given in the ESM file. It is 

worth noting that the FH-SiO2 nanoparticles obtained after these tests displayed spherical 

shapes with uniform particle diameters around 60 nm, whereas the sizes of internal cavities 

grew up to 40 nm. Likewise, the effect of the solvent temperature on the hollow formation 

was explored under reflux to obtain FH-SiO2 nanostructures similar to those from water 

treatment for 5 d at 25ºC, as well as it was observed at low temperature (5 d, 4ºC), which 

suggests that water diffusion is enabled at a wide range of solvent temperatures. The 

suspension pH exerts an effect in the synthesis of FH-SiO2 nanoparticles, which show larger 
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voids when increasing the medium pH. The nanoparticles remain dense at pH 2 after 30 d of 

immersion, while they are degraded and eventually dissolved at pH 9 (Figure 5). This 

suggests that the formation these FH-SiO2 nanoparticles depended on the water diffusion and 

subsequent hydrolysis of alkoxysilanes in a silica-water interface. Such hydrolysis process 

has been recently reported as an activation-less mechanism [39], which suggests that the void 

formation occurs at low temperature and in absence of acid or alkaline catalysts. An increase 

in ionic strength of the F-SiO2 suspensions inhibits the formation of voids into nanoparticles, 

yet early stages of the hollowing process can be assumed when reaction is carried out under 

reflux. Finally, changes in the H2O/SiO2 molar ratio (R) of the microemulsion for obtaining F-

SiO2 affect the synthesis of FH-SiO2, showing that the formation of FH-SiO2 is inhibited at 

high values of R (Figure 6). The increase of available water during microemulsion synthesis 

(i.e. at high R values) improved the silicate condensation and reduced the number of 

unreacted alkoxysilane species in the silica matrix [40]. This, in turn, reduced the formation 

of cavities in the nanoparticles during subsequent water treatment. Interestingly, when the 

synthesis of F-SiO2 nanoparticles was performed through a modified Stöber procedure to 

incorporate both TEOS and FITC-APTES conjugate molecules as silica sources, the obtained 

nanoparticles showed a rough spherical shape with larger polydispersity and bimodal particle 

size distributions. The formation of cavities in the Stöber-like F-SiO2 nanoparticles was 

merely observed for large particles, which implied that the microemulsion route together with 

the introduction of the FITC-APTES favored an incomplete hydrolysis of the silica precursors 

during formation of siloxane framework. The increase in water availability during hydrolysis, 

such at high R or in Stöber synthesis, enabled the polycondensation of silanol groups and 

reduced the presence of unreacted fluorescein-linked organosilanes, therefore avoiding the 

formation of inner cavities. To further clarify the effect of the presence of organosilane 

clusters, fluorescein-free SiO2 nanoparticles were synthesized under similar microemulsion 

conditions and submitted to the above-described void formation process. Either replacing the 

FITC-APTES conjugate by APTES or using TEOS as the solely silicate precursor, the 

obtained SiO2 nanoparticles showed similar sizes and spherical shapes than those obtained for 

F-SiO2.  
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Figure 5. TEM images of the F-SiO2 nanoparticles after immersion in water in dark at 25ºC at 

pH 2 (a), pH 3 (b) and pH 6 (c). The formation of the inner cavities was boosted after 

increasing the pH of the ageing suspension.

 

Figure 6. TEM images of the F-SiO2 nanoparticles synthesized by the microemulsion method 

with R = H2O/SiO2 molar ratios of (a) 30, (b) 40 and (c) 50 and further immersion in water in 

dark at 25ºC for 5 d. The formation of hollow nanostructures was reduced when increasing 

the accessibility of water to the synthesis gel in the microemulsion. 

 

The UV-vis spectra of supernatant solutions after immersion of F-SiO2 nanoparticles 

show a broad absorption peak at 490 nm, with a gradual increase in intensity with time 

(Figure 7). For comparison, spectra of the FITC dye molecule and FITC-APTES conjugate in 

water at pH 6 were measured, showing the distinctive features of fluorescein dianion in polar 

solvents, i.e. a wide band at 490 nm and a minor band in the region of 350-400 nm [41]. This 

feature suggests that fluorescein-linked silicate clusters are being released upon formation of 

(a) (b) (c) 
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the voids. Furthermore, the 1H-NMR analysis of supernatant suspensions indicated the release 

of FITC-APTES clusters (see ESM).

 

Figure 7. UV-vis spectra of supernatant obtained from water-stabilized F-SiO2 suspensions 

upon stabilization (straight line), after 24 h (dashed line) and after 96 h (dotted line). The UV-

vis spectra of FITC (blue line) and APTES-FITC conjugate (red line) in water were included 

for comparison, pointing out the similarity of the supernatant spectra with that of the APTES-

FITC conjugate. 

 

These results suggest that the microemulsion route together with the introduction of 

FITC-APTES conjugate caused an incomplete hydrolysis during the formation of the siloxane 

framework. The role of organic and silicate groups seems to be crucial in the formation of 

FH-SiO2 nanoparticles as well the amount of water. The process is therefore driven by the 

initial growth of FITC-linked organoalkoxysilane nuclei that act as seeds for F-SiO2 

nanoparticles. This suggests that [O3Si-R-Fn] units, with larger hydrophobicity, are mainly 

oriented inwards as silica nanoparticles mature within microemulsion droplets. A shell of 

fully polymerized silica is then formed while in the inner part the access of water to 

alkoxysilane groups is limited. The microemulsion breakage using anhydrous EtOH prevents 

further polymerization and dense F-SiO2 nanoparticles are produced. However, when F-SiO2 

nanoparticles are dispersed in aqueous media, the diffusion of water molecules to the inner 
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core takes place through the surface mesopores, completing the hydrolysis of unreacted 

alkoxysilane groups releasing EtOH and fluorescein-linked silica clusters. Since the density 

of polymerized SiO2 is larger than that of [O3Si-R-Fn] units, the overall process leaves a void 

in the inner part of the nanoparticles, without affecting the outer silica shell. 

Finally, porous shell and the inner core can be exploited for form metal nanohybrids. 

The inclusion of silver, gold and platinum nanoclusters could be achieved through immersion 

of F-SiO2 nanoparticles in aqueous solutions of metal precursors and subsequent reduction 

with NaBH4. The STEM images show that the gold nanoparticles in the Au@SiO2 

nanohybrids are present as disperse nanoparticles embedded in the silica matrix. On the other 

hand, both silver and platinum nanoparticles, generally with larger average sizes about 10 nm, 

can be observed within Ag@SiO2 and Pt@SiO2 nanohybrids forming rattle-like structures 

(Figure 8). The observed morphological differences in the metal-silica nanohybrids can be 

attributed to changes in solvent conditions during metal inclusion and reduction in water.  
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Figure 8. STEM-EDS spectra of Au@FH-SiO2, Ag@FH-SiO2 and Pt@FH-SiO2 nanohybrids 

synthesized by immersion of F-SiO2 in 1-mM aqueous solutions of AgNO3, HAuCl4 and 

H2PtCl6 at 25ºC for 5 d in dark. The high-angle annular dark field (HAADF) STEM 

tomography images of analogous nanohybrids showed the formation of the hollow structure 

and the inclusion of metal nanoparticles. 
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The confinement of the metal in the inner regions of the particle was confirmed by 

XPS analysis. Results showed that the atomic concentration of metals in the surface of 

M@SiO2 nanohybrids was very low, especially for Au and Pt, since the intensity of Au3p, and 

Pt3d signals was under 0.1 % relative to the reference C1s peak (Figure 9a). However, when 

etching the nanomaterial surface using Ar+ ion beam milling the signal intensity of the metal 

atoms increased with the etching time; suggesting that metals at the inner core are 

progressively exposed. Indeed, the relative metal-to-silicon (M/Si) signal intensity is nearly 

zero at the surface of Au@SiO2 and Pt@SiO2 nanohybrids whereas for Ag@SiO2 is about 2.5 

times higher (Figure 9b). This indicates that some silver nanoparticles are present at the 

surface of SiO2, although they represent a small fraction of the total. Finally, the M@SiO2 

nanohybrids show fluorescent emission around 516 nm, which confirms the dual functionality 

(fluorescent + metallic) of these nanohybrid structures and suggest applications in multiple 

fields. Prospective uses of these nanomaterials in nanomedicine and photocatalysis are 

currently under research and results will be reported in future publications. 
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Figure 9. Evolution of the relative intensity of XPS Au3d, Ag3p and Pt3d to C1s signal at 

286 eV as a function of the etching time of Ar+ for Au@FH-SiO2, Ag@FH-SiO2 and Pt@FH-

SiO2 nanoparticles.
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from microemulsion-assisted synthesis of fluorescent F-SiO2 nanoparticles followed by 
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effectively controlled by modification of the solvent thermal and pH conditions as well as the 

degree of polymerization of the silica structure before the aqueous treatment. The silica-metal 

nanohybrids formed have potential application in fields such as catalysis, optics or 

nanomedicine. 
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ELECTRONIC SUPPLEMENTARY MATERIAL 

Detailed experimental procedures and methods, details on the N2 adsorption analysis 

and the NLDFT model used for estimating the porosity, additional TEM and HRTEM images 

of FH-SiO2 nanoparticles obtained under different conditions and 1H-NMR spectra of 

supernatant suspensions after immersion of F-SiO2 in deuterated methanol are available in the 

online version of this article. 
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