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Abstract: Optical Diffraction Tomography has been recently introduced in 
fluid velocimetry to provide three dimensional information of seeding 
particle locations. In general, image reconstruction methods at visible 
wavelengths have to account for diffraction. Linear approximation has been 
used for three-dimensional image reconstruction, but a non-linear and 
iterative reconstruction method is required when multiple scattering is not 
negligible. Non-linear methods require the solution of the Helmholtz 
equation, computationally highly demanding due to the size of the problem. 
The present work shows the results of a non-linear method customized for 
spherical particle location using GPU computing and a made-to-measure 
storing format. 
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1. Introduction

Holographic Particle Image Velocimetry (HPIV) provides simultaneous three components, 
three-dimensional (3C-3D) velocity measurements of a seeded fluid flow [1–3]. The classical 
analysis of HPIV recordings assumes that the particle illuminating and diffracted beams do 
not suffer multiple scattering. In practice, however, multiple scattering effects are common 
and increase background noise, which decrease the number of velocity vectors that can be 
retrieved from a given flow field [4]. Tomographic methods using several recordings from 
different observation directions have been proposed to mitigate this problem [5, 6].The 
application of Optical Diffraction Tomography (ODT) in HPIV, and more specifically the 
Non-Linear ODT, would improve the spatial resolution [7]. 

If the linear approximation is assumed, the spectral components of the field scattered by 
the object are directly related to the spectral components of the object refractive index field 
[8]. For the Non-Linear ODT approach [7, 9], the image reconstruction is considered to be the 
solution that better explains the scattered far field but it requires a bigger computational cost. 
In the implementation of this optimization method, the Helmholtz equation needs to be solved 
for a known refractive index distribution and an illuminating field - the forward problem. 
Appropriate sampling is roughly a tenth of the wavelength, which makes the computational 
requirements very demanding even for small volume flows. Thus, the performance of the 
Non-Linear ODT (NLODT) in HPIV is determined by the computing strategy, and this is 
particularly true for its implementation to 3D problems. Both the use of a priori information 
concerning the object and High Performance Computing (HPC) could improve this 
performance. The use of a priori information can reduce instability in optimization and 
computational time [7, 10]. In fluid velocimetry this information is on the diameter and 
optical properties of the seeding particles, effectively reducing the particle imaging 
reconstruction problem to a particle location problem, as showed in [7, 11]. 

Nowadays, HPC platforms are characterized by the heterogeneity of their resources. Most 
of the modern supercomputers consist of clusters of multi-core nodes which include 
accelerator devices such as GPUs [12]. Earlier works have shown the parallel computation 
capability of GPUs in performing ODT models [13, 14]. In this paper, we will focus our 
attention on the combination of MATLAB with GPU devices in order to offload part of the 
computation and improving the global performance. In particular, we will discuss an 
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implementation of our NLODT model at a source-level MATLAB compiler calling MEX-
files for using GPU routines [15], which is also experimentally evaluated. 

Even though, for a biological flow of (10mm)3 a multiscale strategy will be needed. In a 
first step, a gross image can be obtained with Linear ODT (LODT), where the brightest spots 
will determine the most likely particle locations. Then, a finer resolution could be obtained 
with a local NLODT that can unravel the particle position within cluster of particles. 

In this paper some numerical experiments have been carried out to locate 2µm particles 
within clusters of roughly (10μm)3. A comparison between LODT and NLODT results will 
show the relevance of the multiple scattering between neighbour particles and the multiple 
scattering due to the particle finite size. In particular, we make the following contributions: 
(1) development and validation of a NLODT 3D model for the location of particles (NLODT-
P) when different source of multiple scattering are present; and (2) an efficient exploitation of 
the parallel computing power of the GPU devices for performing optical diffraction 
tomography image reconstruction. 

The paper is organized as follows. Section 2 studies and analyzes the proposed model 
(NLODT-P). Section 3 is devoted to discussing the implementation based on GPU. Section 4 
validates the model with two numerical experiments. Finally, Section 5 summarizes the main 
conclusions and future works. 

2. Description of NLODT-P model 

In fluid velocimetry the flow is seeded by small particles with a different refractive index. A 
typically coherent source is used to illuminate the flow, and this illuminating beam is 
scattered by the seeding particles marking their position at one time instant. To determine the 
velocity field of the flow, two consecutive recordings are required. In particular, in this work 
we will focus on the combination of several simultaneous coherent recordings to recover the 
position of each particle on a certain volume of interest at one time. The same procedure can 
be done with any set of simultaneous recordings and standard PIV analysis can be used 
afterward to determine the flow velocity field. 

NLODT aims to find the refractive index distribution n(r) that could explain 
simultaneously any of the measured scattering fields Em(r). It requires the expected measured 
field, given a known illuminating field and an estimation of n(r), to be computed. This is a 
forward problem, which consists of computing the scattered field Esth(r) by a known object 
and an illuminating or reference beam Er(r). According to scalar diffraction theory the 
(complex) amplitude of a monochromatic electric field, E(r) = Esth(r) + Er(r), propagating in 
a medium of (complex) refractive index, n(r), obeys the Helmholtz equation [16] which can 
be rewritten as follows: 

 ( )( ) ( ) ( ) ( )2 2 2
0 ,sth rk n E f E∇ + =r r r r  (1) 

where f(r) is the scattering potential, defined by ( ) ( )( )2 2
0 1f k n= − −r r . Although there is no 

a linear relation between the refractive index and the scattering potential, both of them can be 
taken as a good representation of the object. Let us remark that, Em(r) is a far-field 
measurement and therefore, the forward solution Esth(r) needs to be filtered to remove the 
non-propagating waves [17], thus obtaining the expected measured field, Ec(r). The 
optimization problem involved in the tomographic reconstruction consists in a minimization 
of the cost function defined by the square root difference between the measured and the 
computed field. For any hologram there is a separate contribution to the cost function denoted 
by the index i thereinafter: 

 
2

cos t( ) ( ) ( , ) .i i
m c

i

f E E f= − r r  (2) 
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This is a non-linear optimization problem that would be addressed by a modified 
Conjugated Gradient Method (CGM) [7]. The search direction at any iteration is the negative 
gradient of the cost function, denoted by g(r). This gradient can be taken as the increment 
Δf(r) that should be added to the available estimation of f(r) to reduce the cost function and 
therefore to better justify the measurements. For the initial iteration, the estimation of the 
scattering potential f(r) is null in the whole volume considered (i.e. free space). Subsequently 
the gradient can be taken as the Linear ODT image of the object. This image is typically a 
smooth distribution with several local maxima, even when some sharp refractive index 
changes are expected. In particular, in fluid velocimetry applications, the object is a sparse 
distribution of particles of known refractive index and shape. Subsequently a relatively small 
matrix PL that stores the particle location can describe the 3D refractive index field. The 
gradient will be used to obtain the PL matrix instead of being used as a reliable image of the 
particle field. 

According to the previous considerations we propose the model referred as NLODT-P 
which is composed by (1) an initial iteration, where the location of the first particle is 
determined, and (2) an iterative process, where the remaining particles are located. The initial 
iteration does contain similar steps to those in the subsequent iterations, but no special 
computing resources are required, therefore it is considered separately. The NLODT-P 
algorithm used is outlined in Fig. 1 and the main details for every step are described below. 

 

Fig. 1. Algorithm of the NLODT-P model. 

Step 1. Location of the 1st particle 

The gradient of the cost function can be expressed as the sum of the simulated Bragg 
holograms between the illuminating field and the back propagated measured field [7]. In 
particular, for the initial iteration, the illuminating field Er

i(r) and the back propagation of the 
measured field Em

i(r) are considered undisturbed. Thus the gradient is essentially the First 
Born Approximation of the scattering potential, i.e. the LODT image: 

 ( ) ( )* * ( ).i i
m r

i

g E E=r r r  (3) 

Conjugated value is represented by * on equations. The particle location could be obtained 
from the position of the maximum of the absolute value of g(r). A better performance of the 
model can be obtained if the gradient is previously filtered in order to find the pattern 
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produced by a sample particle. The LODT image obtained from an isolated particle is 
considered as matched-filter (sample) and computed separately. 

Step 2. Update the refractive index field, n(r) 

From the a priori knowledge of the object in fluid velocimetry, we assume that the refractive 
index field can only take: (1) the refractive index of the seeding particles within a spherical 
region around any located particle; and (2) the fluid refractive index in the remaining voxels 
of the volume of interest. So, when a new particle is located, n(r) is updated accordingly. 

Step 3. Compute the updated gradient, g(r) 

Once an estimation of the scattering potential is available, a similar expression to Eq. (3) can 
be obtained for the new gradient g(r). However, the meaning of both interfering fields and its 
computational strategy have changed. Figure 2 illustrates schematically the process. 

 

Fig. 2. Schematic process of NLODT-P model. 

• Updated illuminating field: Eru
i(n, r). The presence of particles modifies the 

illuminating beam as the particles already located need to be taken into account. For 
this reason the forward solver computes the theoretical scattered field Esth

i(n, r) due 
to the available estimation of n(r). The updated illuminating beam will be the sum of 
the original illuminating field and the scattered field Eru

i(n, r) = Er
i(r) + Esth

i(n, r). 

• Updated measured field: Emu
i(n, r). The measured field can be explained partially by the 

particles already located. In fact, the expected measured field, for a given n(r), can 
be computed as Ec

i(n, r) by applying a frequency filter to the updated illuminating 
field Eru

i(n, r) in order to remove the frequencies which cannot be measured at far 
field or by the NA of the optical system. The difference between this computed 
measured field and the original measured field (Em

i(r)-Ec
i(n, r)) is the field that still 

need to be explained. This difference field is back-propagated through the available 
estimation of n(r) and subsequently the updated measured field is computed. Let us 
remark that the conjugated difference field: (Em

i(r) -Ec
i(n, r))* will play the role of 

the illuminating beam of the second call to the forward solver. 
As in the initial iteration, a separate contribution to the gradient g(r) should be obtained 

for each hologram. The gradient g(r) of the cost function provides the distribution we should 
add to the estimated scattering potential f(r) to minimize the cost function according to the 
classical Conjugated Gradient Method. This gradient can be taken as an image of only the 
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particles that remain to be located. However, our model does not need to solve the full image 
problem, just to find a new particle position. 

Step 4. Locate next particle and exit 

As for the initial iteration, the most probable position of next particle is the absolute 
maximum of the matched-filtered gradient gMF(r). The position is stored in the output variable 
PL, and the peak value, value, is used to decide the end of the model. Experience shows that 
value will decrease in each iteration and a convenient threshold ensures the process stops. The 
criterion to select an appropriate threshold value is not addressed in this work. Thus, a 
maximum number of iterations is also imposed. 

Although the gradient can be expressed by an analytical equation, it still requires the 
resolution of the Helmholtz equation (Forward procedure) twice by each holographic 
recording. The Helmholtz equation is an example of a linear elliptic Partial Differential 
Equation (PDE), which has been extensively studied [16]. It can be numerically solved by 
means of an appropriate transformation based on Green’s functions and a spatial 
discretization [16], for example, Finite Element Method (FEM) [18]. FEM discretizes the 
region of interest in small elements, assuming the function E(r) can be approximated to a 
constant value in each of these elements. A regular mesh of elements is usually considered 
when the object shape is the unknown (inverse problems). So, the spatial derivatives of the 
Laplace operator can be discretized with a seven-point stencil in 3D. Thus, when a 
discretization process based on FEM and a spatial regular 3D mesh is applied to Eq. (1), the 
resultant linear system of equations is defined by Mx = b, where the independent term, b, 
depends on the illumination field, the unknown vector, x, identifies the scattered field and the 
matrix M, is related to the refractive index. This matrix is sparse and exhibits a strong 
regularity in both the pattern and the values of its non-zero elements, because it only includes 
seven non-zero diagonals. Let us note that a similar matrix will be obtained with a Finite 
Difference Method (FDM) approach with a second order approximation and the same regular 
mesh. The matrix M is very large and its size depends on the number of spatial discretization 
points or voxels into the volume (Vol) [14]. To avoid instability effects the voxels should be 
located such that the nearest neighbors are not further away than one tenth of the wavelength 
[19]. So, the Vol value results very high. Therefore, the resolution of a large size linear system 
of equations composed by complex numbers is included in Forward procedures. This 
consumes most of the computational resources of NLODT-P. 

3. GPU-Based implementation of NLODT-P 

NLODT-P model demands very high memory requirements and consumes long runtime, 
since every iteration includes the resolution of two Helmholtz equations. So, for the NLODT-
P implementation, it is essential to apply: (i) specific approaches to reduce its memory 
requirements and (ii) High Performance Computing techniques to decrease its runtime. We 
have developed an approach to accelerate the resolution of the Helmholtz equation based on 
the exploitation of the regularities of the coefficient matrix (previously denoted as M) and the 
use of GPU computing. 

The most computationally demanding procedure of NLODT-P is Forward (95% of the 
total runtime of the NLODT-P model), which is devoted to the resolution of the Helmholtz 
differential equation. We have considered the Biconjugate Gradient Method (BCG) for 
solving the large systems obtained from the discretization of the Helmholtz equations [20]. It 
iteratively computes two sparse matrix vector operations (SpMVs) that consume most BCG 
runtime [21]. BCG is a non-stationary iterative method to solve linear systems of 
equations Mx b=  , where the matrix n nM C ×∈ can be non-symmetric. Figure 3 shows the 
BCG method in a schematic way. 
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The key operations in the BCG method are two kinds of vector operations (dot and saxpy) 
and two sparse matrix vector products (SpMVs), computed at every iteration. It is remarkable 
that the symmetry of the Helmholtz equation has allowed the use of M instead of MT. 

 

Fig. 3. Algorithm of the Biconjugate Gradient Method. 

Bearing in mind that the coefficient matrix M, obtained from the discretization of 3D 
Helmholtz equation, exhibits several regularities, the performance of SpMVs involved in the 
BCG method can be improved when its regularity is taken into account. So, we have 
developed an approach to accelerate the resolution of the Helmholtz equation using the BCG 
solver by exploiting the regularities of matrix M and the GPU computing. 

Regularities of M allow us to define it by a specific storage format, which stores the 
minimal information of the Helmholtz matrix. In this way, both, memory requirements and 
BCG runtime are considerably reduced since this compact format requires less memory 
accesses to read sparse matrix elements. Hereinafter the format which takes advantage of the 
regularities of M is referred to as Compressed Regular Format (CRF) [22]. 

The regularities of M are the following: (1) M is symmetric; (2) non-zero elements are 
located at seven diagonals in the matrix, where one is the main diagonal, two of them are the 
first lower and upper diagonals and four of them are located by ± D1-th and ± D2-th 
diagonals; (3) all the elements of every lateral diagonal are equal to 1. 

From these characteristics, the CRF consists of: (1) One array, M[] (complex) of 
dimension Vol; and (2) two additional integer values (D1, D2) which specify the 
displacements of the lateral diagonals with respect to the main diagonal. 

CRF optimally minimizes the amount of data needed to store the sparse matrix. The 
computation time of SpMV (included in BCG) is decremented because: (1) the number of 
memory accesses to read the elements of the sparse matrix is reduced; and (2) the number of 
float operations is reduced because six complex products can be avoided to compute every 
element of the output vector (bearing in mind the known value, one, of the lateral diagonals 
elements). CRF significantly reduces the memory requirements (in a factor of ten) and the 
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arithmetic operations which are involved in SpMVs, with respect to the COO format (default 
in MATLAB). Table 1 shows the memory requirements (in GB) to store the sparse matrix M 
with several sizes, using the COO format (MATLAB) and CRF. 

Table 1. Memory Requirements (in GB) to Store the Sparse Matrix M with Several Sizes, 
Using the COO Format (MATLAB) and CRF 

Vol COO (MATLAB) CRF 

2003 1.25 0.12 

2203 1.66 0.16 

2403 2.16 0.21 

2603 2.75 0.26 

2803 3.43 0.33 

3003 4.22 0.40 

 
Additionally, the specific BCG method based on CRF has been accelerated using the GPU 

computing because GPUs offer desktop massive parallelization that can strongly reduce the 
runtime of this kind of computations. CUDA is a parallel interface that enables to increase the 
performance by harnessing the power of GPUs [23]. The GPU version of BCG is based on 
CUBLAS library [24] for accelerating vector operations and two different kernels for SpMVs 
based on CRF. 

Preliminary implementations of NLODT-P have been developed by means of MATLAB 
framework [7]. So, it is necessary to assemble both languages (MATLAB and CUDA) to 
have the ease of use of MATLAB and the acceleration of GPU computing. Specific MEX-
files routines [15] combined with MATLAB have been developed for accelerating the most 
computational costly procedure of the model (Forward procedure). MEX-files are 
dynamically linked subroutines produced from C, C +  + or CUDA source code that, when 
compiled, can be run from within MATLAB in the same way as MATLAB files or built-in 
functions. 

In order to analyze the computational performance of NLODT-P, numerical experiments 
with several volume sizes have been developed. These experiments execute NLODT-P for the 
location of four particles of 0.5μm diameter in the volumes which range from 2003 to 2803 
voxels from the input information of three holograms. For the evaluation, MATLAB R2012a 
(enable multithreading) has been executed on a CPU (2x4 Intel Xeon E5620 cores, 48 GB 
RAM, 2.4 GHz clock speed and under Linux). Moreover, a GPU device NVIDIA Tesla 
M2090 has been considered. The NVIDIA GPU is used to accelerate the Forward procedure. 

Figure 4 shows the execution runtime (in seconds) of NLODT-P using both approaches: 
only MATLAB framework and CUDA-MATLAB combination. GPU implementation of 
NLODT-P reduces the runtime by a factor of 37 from the initial MATLAB version. In other 
words, we have obtained acceleration factors up to 37 × with respect to the approach that uses 
neither GPU computing nor the CRF format. Therefore, the use of MATLAB, GPU 
computing and an ad hoc format to store the regular sparse matrix makes feasible the 
extension of the model. 

#214524 - $15.00 USD Received 23 Jun 2014; revised 19 Oct 2014; accepted 7 Nov 2014; published 10 Feb 2015 
© 2015 OSA 23 Feb 2015 | Vol. 23, No. 4 | DOI:10.1364/OE.23.004021 | OPTICS EXPRESS 4028 



 

Fig. 4. Comparison of the NLODT-P runtime for MATLAB + GPU (GPU computing and CRF 
format) and the approach only with MATLAB. 

4. Numerical experiments 

The seeding concentration determines the maximum spatial resolution of the measured 
velocity field. Thus, NLODT that tackles the multiple scattering effects, could increase the 
classical particle velocimetry performance. Multiple scattering can be due to: (1) the particle 
finite size and (2) the close presence of other particles that modifies both, the illuminating 
beam and the scattered field diffracted by each particle. NLODT-P aims to resolve the 
particle location problem thanks to the matched-filtering strategy and the iterative procedure. 

The relevance of the two sources on the particle image noise depends also on the optical 
configuration. Thus, two numerical experiments with different observation configuration have 
been studied: with full optical access [Fig. 5] and with only one observation direction [Fig. 8]. 
An apparently simple particle distribution consisting on four 2μm particles has been chosen. 
The illumination direction for each hologram is chosen along x, y and z axis respectively: 
they are illustrated in the figure by the slim red arrows [Fig. 5(a)]. The particles are stuck 
together and there are placed so that there is always one particle obscured by the others. 

 

Fig. 5. (a) 3D view of the particle distribution problem with the full optical access recording 
configuration. LODT image: (b) 3D view of the brightest voxels and (c) 2D view of the plane 
at z = 64 pixels. 

We consider a typical coherent illumination provided by a He-Ne laser, with λ = 0.633µm 
and that the holograms are recorded at far field with a NA = 0.55 microscope objective. The 
particle refractive index has been chosen as n = 1.33 (water) and the embedding media is 
considered air (n = 1.00). The volume of interest has been divided in 160 × 160 × 160 voxels 
of one tenth of the wavelength. First, for simplicity, the observation directions have been 
chosen so they coincide with the illumination direction for each hologram: they are illustrated 
by the gross green arrows. This configuration maximizes the extension of the measured 
scattering spectrum by the three holograms, but it requires full optical access. 

Figure 5(b) shows the 3D shape of the surface drawn by the 1‰ brightest voxels of the 
LODT image of the particle distribution problem. To better illustrate the blurred image, the 
modulus of the gradient at the plane z = 64 pixel that it is centered on the bottom three 
particles is also shown on Fig. 5(c). It is clear that the position of the particles cannot be 
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recovered from the LODT image. The relevance of the particle finite size to multiple 
scattering in this case is apparent when an isolated particle is considered. The LODT image of 
one particle recovered from similar three in-line holograms has been computed separately: the 
3D view is shown on Fig. 6(a), and the modulus at the central plane on Fig. 6(b). The LODT 
image of the isolated particle is far from a spherical or even an Airy-like distribution. This 
complex amplitude has been referred as sample in the previous section since a similar pattern 
should be expected around each particle position on the LODT image for any other 2 µm-
particle distribution. Thus, sample can be used to compute a matched-filter and to unravel the 
LODT image of Fig. 5(b)-5(c). Now, from the filtered LODT image, the four peak positions 
can be clearly identified [Fig. 6(c)-6(d)]. 

 

Fig. 6. LODT image of one isolated particle (sample): (a) 3D view and (b) 2D view of the 
central plane (at z = 81 pixels). Filtered LODT image of the particle distribution problem: (c) 
3D view and (d) 2D view of the plane at z = 64 pixels. 

As expected, NLODT-P can also solve this particle distribution problem. At each 
iteration, sample is also used to compute the filtered gradient of the cost function. The 
brightest peak of the filtered gradient determines the particle located in each iteration. Figure 
7 shows from (left to right) the filtered gradient of the first iteration (which coincides with the 
filtered LODT image) and of the following iterations. For this first experiment, raw LODT 
does not resolve the particle distribution; meanwhile filtered LODT and NLODT do resolve 
the problem with similar location errors, around 2.1 pixels (0.13μm). Thus, the use of a 
matched-filter, using a-priori information of the particles, was enough to obtain the particle 
positions. 

 

Fig. 7. Filtered NLODT gradients (images of the particles that remain to be located) for the full 
optical access configuration. 

Ideally, for an example with experimental data we would expect around one thousand 
particles. If the matched-filter could unravel several particles at once, a straightforward 
modification in the line 14 of the algorithm [Fig. 1] would allow recovering the position of 
several particles at every iteration. However, as the next simulated experiment shows, the 
maximum number of particles, which can be located at every iteration, is a parameter that has 
to be studied carefully, as it depends not only on the particle concentration but also on the 
optical recording system. 

On a second experiment we have considered a more realistic set-up: the illumination 
directions are from three orthogonal directions as before, but now all the holograms are 
recorded from the same observation direction. This simplifies the calibration of the recording 
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set-up and the subsequent superposition of the image obtained from each hologram. It is clear, 
that the spatial resolution will be now reduced and particle images will be elongated along the 
observation direction. This observation direction has been chosen as shown in the Fig. 8(a) so 
they form an angle of 45° with any of the illumination direction. This means that the 
illuminating field and the forward scattering cannot be recorded by air-immersion objectives, 
and subsequently low frequencies of the object are not recorded [8]. 

 

Fig. 8. (a) 3D view of the configuration with one observation direction. Filtered LODT image: 
(b) 3D view of the brightest voxels and (c) 2D view at z = 64 pixels. 

The LODT image does not resolve the particle distribution with this observation 
configuration. Furthermore, even after computing the corresponding sample and the filtered 
LODT image [Fig. 8(b) and 8(c)], only three particles can be located. It is relevant to note that 
if we admit these three peaks as valid particle positions in this first iteration, next gradient 
would be a noisy distribution without a clear peak. Thus, the algorithm would finish here or 
its output would include some new wrong particle locations, depending on the finishing 
criterion. In this experiment, the high particle concentration and the limited observation 
directions make the inverse problem very sensitive to the initial particle locations. Thus, only 
one particle location per iteration has been admitted. 

The filtered gradient obtained at every iteration of NLODT-P model is shown in Fig. 9. 

 

Fig. 9. Filtered NLODT gradient for the configuration with only one observation direction: 
(top) 3D view and (bottom) 2D view at z = 64 pixels. 

From the figure, we can appreciate how the visibility of the particle at the corner (x,y,z) = 
(96,64,64) increases with each iteration. The final position error is roughly 0.3µm, even 
though, the performance of NLODT-P is clearly advantageous compared to the linear 
approach as it is apparent from these small numerical experiments. Additionally, the 
combination of MATLAB and GPU for solving the Forward problem, previously discussed, 
makes feasible the study of such kind problems and, subsequently, the use of NLODT-P for 
fluid velocimetry applications. 
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5. Conclusions and future works 

In this paper a three dimensional non-linear ODT model to locate particles has been 
presented, as part of a fluid velocimetry technique. Two numerical experiments, with 
different observation configuration but identical illumination set-up, have been considered. 
They illustrate that multiple scattering influences the object visualization in a different way 
depending on the recording configuration. These experiments also demonstrate the 
advantages of NLODT-P vs LODT performance. It has been shown that multiple scattering 
due to the particle finite size can be tackled with a suitable matched filter, but multiple 
scattering between particles have to be addressed with an iterative optimization method such 
as NLODT-P. 

We have implemented the NLODT-P model using MATLAB combined with GPU 
computing by means of MEX-files due to the fact that MEX-files allow the combination of 
CUDA-GPU programming and MATLAB. Acceleration factors range up to 37 × with respect 
to the approach that only uses MATLAB framework. Additionally, the use of a specific 
format to store the large sparse matrix (M), involved in the BCG method, has reduced the 
memory requirements by a factor of ten with respect to the traditional format for specifying 
sparse matrices in MATLAB. In this line, we are currently working on the implementation of 
a hybrid code of the Forward procedure, based on the combination of CPUs and GPUs in 
order to take advantage of the heterogeneity of the resources of the modern high performance 
architectures [25]. This hybrid implementation could allow us to extend the resolution of this 
kind of problems. 

As consequence of this work we can say the NLODT-P is a good approach to improve the 
accuracy of linear ODT methods in locating seeding particles in fluid velocimetry 
applications. High Performance Computing platforms and tools are essential to develop and 
apply this approach. However, further work is needed towards a multiscale model for 
embedding these proposals in production environments. 
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