101 research outputs found

    Global climate-related predictors at kilometer resolution for the past and future

    Get PDF
    A multitude of physical and biological processes on which ecosystems and human societies depend are governed by the climate, and understanding how these processes are altered by climate change is central to mitigation efforts. We developed a set of climate-related variables at as yet unprecedented spatiotemporal detail as a basis for environmental and ecological analyses. We downscaled time series of near-surface relative humidity (hurs) and cloud area fraction (clt) under the consideration of orography and wind as well as near-surface wind speed (sfcWind) using the delta-change method. Combining these grids with mechanistically downscaled information on temperature, precipitation, and solar radiation, we then calculated vapor pressure deficit (vpd), surface downwelling shortwave radiation (rsds), potential evapotranspiration (pet), the climate moisture index (cmi), and site water balance (swb) at a monthly temporal and 30 arcsec spatial resolution globally from 1980 until 2018 (time-series variables). At the same spatial resolution, we further estimated climatological normals of frost change frequency (fcf), snow cover days (scd), potential net primary productivity (npp), growing degree days (gdd), and growing season characteristics for the periods 1981–2010, 2011–2040, 2041–2070, and 2071–2100, considering three shared socioeconomic pathways (SSP126, SSP370, SSP585) and five Earth system models (projected variables). Time-series variables showed high accuracy when validated against observations from meteorological stations and when compared to alternative products. Projected variables were also highly correlated with observations, although some variables showed notable biases, e.g., snow cover days. Together, the CHELSA-BIOCLIM+ dataset presented here (https://doi.org/10.16904/envidat.332, Brun et al., 2022) allows improvement to our understanding of patterns and processes that are governed by climate, including the impact of recent and future climate changes on the world's ecosystems and the associated services on societies.</p

    Co-simulation coupling spectral/finite elements for 3D soil/structure interaction problems

    Get PDF
    International audienceThe coupling between an implicit finite elements (FE) code and an explicit spectral elements (SE) code has been explored for solving the elastic wave propagation in the case of soil/structure interaction problem. The coupling approach is based on domain decomposition methods in transient dynamics. The spatial coupling at the interface is managed by a standard coupling mortar approach, whereas the time integration is dealt with an hybrid asynchronous time integrator. An external coupling software, handling the interface problem, has been set up in order to couple the FE software Code_Aster with the SE software EFISPEC3D

    Molecular assessment of dietary variation in neighbouring primate groups

    Get PDF
    Facing rapid environmental changes and anthropogenic habitat destruction, animal behavioural plasticity becomes an adaptive potential that needs to be considered in conservation strategies along with, for example, genetic diversity. Here, we evaluate to what extent non-invasive environmental DNA (eDNA) methods may contribute to the assessment of intraspecies behavioural plasticity in terms of foraging behaviour. We analysed DNA metabarcoding data for plant components in the diet of four neighbouring groups of wild vervet monkeys Chlorocebus pygerythrus to identify intergroup variation (IGV). The faecal samples considered for the analyses were limited to the summer season to minimise the impact of seasonality. Each sample was attributed by observation to individuals with known life history data. A plant survey was conducted in each group home range during the study period to account for environmental variation. We observed mixed results when testing whether IGV in plant consumption was greater than intragroup variation, indicating that the influence of social dynamics must be considered. Intragroup variation was positively correlated with group size. We observed IGV in diet composition among all groups as well as in some pairwise comparisons. We found significant dietary differences between two group pairs when considering only adult females. Lastly, we observed IGV in foraging of specific plants that were not explained by their distribution, suggesting behavioural differences in selectivity between groups. Our study system and organism, being a highly social and non-threatened primate species, with constant gene flow and overlapping territories between groups, provides an ideal model to evaluate the usage of eDNA-based methods to better understand the impact of social factors on IGV. Our results highlight the need to consider social and demographic factors, the impact of which remains complicated to disentangle from environmental factors. However, we emphasise the great potential for studying social groups using eDNA and that such studies are needed to better understand intraspecific behavioural plasticity in wild populations. </ol

    Focal vs. fecal: Seasonal variation in the diet of wild vervet monkeys from observational and DNA metabarcoding data

    Get PDF
    Assessing the diet of wild animals reveals valuable information about their ecology and trophic relationships that may help elucidate dynamic interactions in ecosystems and forecast responses to environmental changes. Advances in molecular biology provide valuable research tools in this field. However, comparative empirical research is still required to highlight strengths and potential biases of different approaches. Therefore, this study compares environmental DNA and observational methods for the same study population and sampling duration. We employed DNA metabarcoding assays targeting plant and arthropod diet items in 823 fecal samples collected over 12 months in a wild population of an omnivorous primate, the vervet monkey (Chlorocebus pygerythrus). DNA metabarcoding data were subsequently compared to direct observations. We observed the same seasonal patterns of plant consumption with both methods; however, DNA metabarcoding showed considerably greater taxonomic coverage and resolution compared to observations, mostly due to the construction of a local plant DNA database. We found a strong effect of season on variation in plant consumption largely shaped by the dry and wet seasons. The seasonal effect on arthropod consumption was weaker, but feeding on arthropods was more frequent in spring and summer, showing overall that vervets adapt their diet according to available resources. The DNA metabarcoding assay outperformed also direct observations of arthropod consumption in both taxonomic coverage and resolution. Combining traditional techniques and DNA metabarcoding data can therefore not only provide enhanced assessments of complex diets and trophic interactions to the benefit of wildlife conservationists and managers but also opens new perspectives for behavioral ecologists studying whether diet variation in social species is induced by environmental differences or might reflect selective foraging behaviors

    Host conservation through their parasites: molecular surveillance of vector-borne microorganisms in bats using ectoparasitic bat flies

    Get PDF
    Most vertebrates host a wide variety of haematophagous parasites, which may play an important role in the transmission of vector-borne microorganisms to hosts. Surveillance is usually performed by collecting blood and/or tissue samples from vertebrate hosts. There are multiple methods to obtain samples, which can be stored for decades if properly kept. However, blood sampling is considered an invasive method and may possibly be harmful to the sampled individual. In this study, we investigated the use of ectoparasites as a tool to acquire molecular information about the presence and diversity of infectious microorganism in host populations. We tested the presence of three distinct vector-borne microorganisms in both bat blood and bat flies: Bartonella bacteria, malaria-like Polychromophilus sp. (Apicomplexa), and Trypanosoma sp. (Kinetoplastea). We detected the presence of these microorganisms both in bats and in their bat flies, with the exception of Trypanosoma sp. in South African bat flies. Additionally, we found Bartonella sp. in bat flies from one population in Spain, suggesting its presence in the host population even if not detected in bats. Bartonella and Polychromophilus infection showed the highest prevalence in both bat and bat fly populations. Single, co- and triple infections were also frequently present in both. We highlight the use of haematophagous ectoparasites to study the presence of infectious microorganism in host blood and its use as an alternative, less invasive sampling method

    N‐SDM: a high‐performance computing pipeline for Nested Species Distribution Modelling

    Get PDF
    Predicting contemporary and future species distributions is relevant for science and decision making, yet the development of high‐resolution spatial predictions for numerous taxonomic groups and regions is limited by the scalability of available modelling tools. Uniting species distribution modelling (SDM) techniques into one high‐performance computing (HPC) pipeline, we developedN‐SDM, an SDM platform aimed at delivering reproducible outputs for standard biodiversity assessments.N‐SDMwas built around a spatially‐nested framework, intended at facilitating the combined use of species occurrence data retrieved from multiple sources and at various spatial scales.N‐SDMallows combining two models fitted with species and covariate data retrieved from global to regional scales, which is useful for addressing the issue of spatial niche truncation. The set of state‐of‐the‐art SDM features embodied inN‐SDMincludes a newly devised covariate selection procedure, five modelling algorithms, an algorithm‐specific hyperparameter grid search, and the ensemble of small‐models approach.N‐SDMis designed to be run on HPC environments, allowing the parallel processing of thousands of species at the same time. All the information required for installing and runningN‐SDMis openly available on the GitHub repositoryhttps://github.com/N‐SDM/N‐SDM

    N‐SDM: a high‐performance computing pipeline for Nested Species Distribution Modelling

    Get PDF
    Predicting contemporary and future species distributions is relevant for science and decision making, yet the development of high-resolution spatial predictions for numerous taxonomic groups and regions is limited by the scalability of available modelling tools. Uniting species distribution modelling (SDM) techniques into one high-performance computing (HPC) pipeline, we developed N-SDM, an SDM platform aimed at delivering reproducible outputs for standard biodiversity assessments. N-SDM was built around a spatially-nested framework, intended at facilitating the combined use of species occurrence data retrieved from multiple sources and at various spatial scales. N-SDM allows combining two models fitted with species and covariate data retrieved from global to regional scales, which is useful for addressing the issue of spatial niche truncation. The set of state-of-the-art SDM features embodied in N-SDM includes a newly devised covariate selection procedure, five modelling algorithms, an algorithm-specific hyperparameter grid search, and the ensemble of small-models approach. N-SDM is designed to be run on HPC environments, allowing the parallel processing of thousands of species at the same time. All the information required for installing and running N-SDM is openly available on the GitHub repository https://github.com/N-SDM/N-SDM

    Syndromic surveillance and heat wave morbidity: a pilot study based on emergency departments in France

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The health impacts of heat waves are serious and have prompted the development of heat wave response plans. Even when they are efficient, these plans are developed to limit the health effects of heat waves. This study was designed to determine relevant indicators related to health effects of heat waves and to evaluate the ability of a syndromic surveillance system to monitor variations in the activity of emergency departments over time. The study uses data collected during the summer 2006 when a new heat wave occurred in France.</p> <p>Methods</p> <p>Data recorded from 49 emergency departments since July 2004, were transmitted daily via the Internet to the French Institute for Public Health Surveillance. Items collected on patients included diagnosis (ICD10 codes), outcome, and age. Statistical t-tests were used to compare, for several health conditions, the daily averages of patients within different age groups and periods (whether 'on alert' or 'off alert').</p> <p>Results</p> <p>A limited number of adverse health conditions occurred more frequently during hot period: dehydration, hyperthermia, malaise, hyponatremia, renal colic, and renal failure. Over all health conditions, the total number of patients per day remained equal between the 'on alert' and 'off alert' periods (4,557.7/day vs. 4,511.2/day), but the number of elderly patients increased significantly during the 'on alert' period relative to the 'off alert' period (476.7/day vs. 446.2/day p < 0.05).</p> <p>Conclusion</p> <p>Our results show the interest to monitor specific indicators during hot periods and to focus surveillance efforts on the elderly. Syndromic surveillance allowed the collection of data in real time and the subsequent optimization of the response by public health agencies. This method of surveillance should therefore be considered as an essential part of efforts to prevent the health effects of heat waves.</p

    Estimation de la pose d'une caméra à partir d'un flux vidéo en s'approchant du temps réel

    No full text
    National audienceTrouver une méthode permettant de calculer la pose d'une image avec robustesse et rapidité est essentiel en réalité augmentée. Nous allons présenter ici l'approche que nous avons suivi pour nous rapprocher du temps réel en utilisant les points caractéristiques SIFT [4]. Nous proposons de filtrer à la fois les points SIFT mais aussi les images à utiliser, afin de concentrer nos calculs sur les données pertinentes
    corecore