68 research outputs found

    Experimental constraints on the textures and origin of obsidian pyroclasts

    Get PDF
    Obsidian pyroclasts are commonly preserved in the fall deposits of explosive silicic eruptions. Recent work has suggested that they form by sintering of ash particles on the conduit walls above the fragmentation depth and are subsequently torn out and transported in the gas-particle dispersion. Although the sintering hypothesis is consistent with the general vesicle textures and dissolved volatiles in obsidian pyroclasts, previous sintering experiments do not capture all of the textural complexities observed in the natural pyroclasts. Here, we design experiments in which unimodal and bimodal distributions of rhyolitic ash are sintered at temperatures and H2O pressures relevant to shallow volcanic conduits and under variable cooling rates. The experiments produce dense, welded obsidian that have a range of textures similar to those observed in natural pyroclasts. We find that using a unimodal distribution of particles produces obsidian with evenly distributed trapped vesicles, while a bimodal initial particle distribution produces obsidian with domains of poorly vesicular glass among domains of more vesicle-rich glass. We also find that slow cooling leads to resorption of trapped vesicles, producing fully dense obsidian. These broad features match those found in obsidian pyroclasts from the North Mono (California, USA) rhyolite eruption, providing strong support to the hypothesis that obsidian can be produced by ash sintering above the fragmentation depth during explosive eruptions

    An experimentally-validated numerical model of diffusion and speciation of water in rhyolitic silicate melt

    Get PDF
    The diffusion of water through silicate melts is a key process in volcanic systems. Diffusion controls the growth of the bubbles that drive volcanic eruptions and determines the evolution of the spatial distribution of dissolved water during and after magma mingling, crystal growth, fracturing and fragmentation, and welding of pyroclasts. Accurate models for water diffusion are therefore essential for forward modelling of eruptive behaviour, and for inverse modelling to reconstruct eruptive and post-eruptive history from the spatial distribution of water in eruptive products. Existing models do not include the kinetics of the homogeneous species reaction that interconverts molecular () and hydroxyl () water; reaction kinetics are important because final species distribution depends on cooling history. Here we develop a flexible 1D numerical model for diffusion and speciation of water in silicate melts. We validate the model against FTIR transects of the spatial distribution of molecular, hydroxyl, and total water across diffusion-couple experiments of haplogranite composition, run at 800–1200°C and 5 kbar. We adopt a stepwise approach to analysing and modelling the data. First, we use the analytical Sauer-Freise method to determine the effective diffusivity of total water as a function of dissolved water concentration and temperature for each experiment and find that the dependence of on is linear for wt.% and exponential for wt.%. Second, we develop a 1D numerical forward model, using the method of lines, to determine a piece-wise function for that is globally-minimized against the entire experimental dataset. Third, we extend this numerical model to account for speciation of water and determine globally-minimized functions for diffusivity of molecular water and the equilibrium constant for the speciation reaction. Our approach includes three key novelties: 1) functions for diffusivities of and , and the speciation reaction, are minimized simultaneously against a large experimental dataset, covering a wide range of water concentration ( wt.%) and temperature (), such that the resulting functions are both mutually-consistent and broadly applicable; 2) the minimization allows rigorous and robust analysis of uncertainties such that the accuracy of the functions is quantified; 3) the model can be straightforwardly used to determine functions for diffusivity and speciation for other melt compositions pending suitable diffusion-couple experiments. The modelling approach is suitable for both forward and inverse modelling of diffusion processes in silicate melts; the model is available as a Matlab script from the electronic supplementary material

    A validated numerical model for the growth and resorption of bubbles in magma

    Get PDF
    The rate and timing of bubble growth in magma is an important control on eruption style, determining whether or not magma fragments to produce an explosive eruption. Bubbles nucleate, grow, shrink, and de-nucleate in magma in response to changes in pressure and temperature, and these changes may be recorded in the spatial distribution and speciation of water 'frozen into' the glass in eruptive products. Accurate modelling of growth and resorption is therefore essential both for forward modelling of eruptive processes, and for inverse modelling to reconstruct pre-eruptive history. We present the first experimentally-validated numerical model for bubble growth and resorption in magma. The model includes the kinetics of speciation, allows for arbitrary temperature and pressure pathways, and accounts for the impact of spatial variations in water content on diffusivity and viscosity. We validate the model against three sets of data. (1) Continuous vesicularity-time data collected using optical dilatometry and in-situ synchrotron-source x-ray tomography of natural and synthetic magma during thermally-induced vesiculation and resorption at magmatic temperatures and ambient pressure. This represents approximately isobaric bubble growth and resorption under disequilibrium conditions. (2) Final vesicularity data from decompression experiments at magmatic temperatures and pressures. This represents isothermal, decompression-driven bubble growth from equilibrium to strongly disequilibrium conditions. (3) Speciation data from diffusion-couple experiments on synthetic haplogranites at magmatic temperatures and pressures. The numerical model closely reproduces all experimental data, providing validation against equilibrium and disequilibrium bubble growth/resorption and speciation scenarios. The validated model can be used to predict the growth and resorption of bubbles, and associated changes in magma properties, for arbitrary eruption pathways. It can also be used to reconstruct pressure-temperature-time pathways from textures and volatile contents of eruptive products. This will open up new ways of accessing the dynamics of magma ascent and eruption in unobserved volcanic eruptions

    Effect of glass on the frictional behavior of basalts at seismic slip rates

    Get PDF
    We performed 31 friction experiments on glassy basalts (GB) and glass-free basalts (GFB) at slip rates up to 6.5 m s−1 and normal stress up to 40 MPa (seismic conditions). Frictional weakening was associated to bulk frictional melting and lubrication. The weakening distance (Dw) was about 3 times shorter in GB than in GFB, but the steady state friction was systematically higher in GB than in GFB. The shorter Dw in GB may be explained by the thermal softening occurring at the glass transition temperature (Tg ~500°C), which is lower than the bulk melting temperature (Tm ~1250°C) of GFB. Postexperiment microanalyses suggest that the larger crystal fraction measured in GB melts results in the higher steady state friction value compared to the GFB melts. The effect of interstitial glass is to facilitate frictional instability and rupture propagation in GB with respect to GFB

    The initial phase of the 2021 Cumbre Vieja ridge eruption (Canary Islands): Products and dynamics controlling edifice growth and collapse

    Get PDF
    Tajogaite cone in the Cumbre Vieja ridge (La Palma, Canary Islands) erupted between 19 September and 13 December 2021. The tephra and lava sourced from the newly formed fissure rapidly built a pyroclastic cone. During the early days of eruption and after several small-scale landslides, the west flank of the edifice partially collapsed on 25 September, breaching the cone and emplacing a prominent raft-bearing lava flow. Our research combines direct observations, digital elevation models, thermal and visible imaging, and textural and compositional investigation of the explosive products to describe and characterize the edifice growth and collapse. The cone built over a steep slope (26°) and its failure occurred after an intense phase of lava fountaining (up to 30 m3 s−1) that produced rapid pyroclastic accumulation. We suggest that an increased magma supply, to an ascent rate of 0.30 m s−1, led to the rapid growth of the cone (at 2.4 × 106 m3 day−1). Simultaneously, the SW lava flow reactivated and formed a lava ‘seep’ that undercut the flank of the cone, triggering a lateral collapse via rotational rockslide that moved at minimum speeds of 34–70 m h−1. The lateral collapse formed a ~ 200 m wide scar, involving 5.5 × 106 m3 of material, and covered 1.17 km2 with decametric edifice portions and raft-bearing lava. The collapse produced a modest change in the vent geometry, but did not affect eruptive activity long term. A short pause in the eruption after the collapse may have been favored by rapid emptying of the shallower magma system, reducing ascent rates and increasing crystallization times. These results reveal the complex chain of events related to the growth and destruction of newly formed volcanic cones and highlight hazards when situated close to inhabited areas

    Rapid ascent of rhyolitic magma at Chaitén volcano, Chile

    Get PDF
    International audienceAlthough rhyolite magma has fuelled some of the Earth's largest explosive volcanic eruptions, our understanding of these events is incomplete due to the previous lack of direct observation of these eruptions. On 1 May 2008, Chaitén volcano in Chile erupted rhyolite magma unexpectedly and explosively. Here, petrological and experimental data are presented that indicate that the hydrous rhyolite magma at Chaitén ascended very rapidly from storage depth to near-surface, with velocities of the order of one metre per second

    The architecture and shallow conduits of Laki-type pyroclastic cones: insights into a basaltic fissure eruption

    No full text
    Pyroclastic cones built along basaltic fissures provide important volcanological information, but it is often difficult to examine the early-erupted products due to burial by later products. Furthermore, it is rare to see the link between the feeder dyke and overlying cone fully exposed. In this study, we detail the architecture of a hybrid spatter cone, scoria half-cone and feeder dyke that has been dissected to below the pre-eruption surface by glacial floods. The cones were constructed during the 6–8 ka Rauðuborgir-Kvensöðul fissure eruption in North Iceland during Hawaiian- and Strombolian-style activities. Widening of their feeder dyke in the shallow sub-surface to produce an upward flaring morphology was accommodated by country rock removal and elastic host rock deformation. Ballistic calculations and stratigraphic relationships indicate that the scoria half-cone was constructed early in the eruption from the deposits of a lava fountain ~100 m high. A decline in fountain height and the generation of abundant welded deposits resulted in the formation of a nested spatter cone within the scoria half-cone. The cones are similar in structure and size to the hybrid scoria and spatter cones produced during the 15-km3 1783 Laki eruption and serve as a valuable window into the construction of pyroclastic edifices during basaltic fissure eruptions

    Transformations in methane adsorbed in slit pores

    No full text
    International audienceProperties of methane adsorbed in confined geometries are interesting from both fundamental and practical points of view. At ambient temperatures adsorption at the supercritical conditions is usually studied, as it is interesting from the point of view of methane storage. At the same time, the analysis of low temperature adsorption properties is essential for understanding the mechanism of adsorption, as a function of temperature and the pore size. In this work we study phase diagram of methane confined in carbon slit pores of the width between 1nm and 4nm. We analyze the mechanism of the layering transition(s) and capillary condensation at subcritical conditions, for temperatures between 80 K and 180 K, then we study the pore s storage capacity, up to the room temperature. The mechanism of the layers formation is strongly temperature dependent, and changes from a sharp adsorption at low temperature to more continuous one at higher temperatures. The size of pore defines the number of layers adsorbed: 1 nm pore allows adsorbing 2 layers of methane molecules. Capillary condensation is observed in 4 nm pores
    • …
    corecore