174 research outputs found

    Exoplanet Transit Variability: Bow Shocks and Winds Around HD 189733b

    Full text link
    By analogy with the solar system, it is believed that stellar winds will form bow shocks around exoplanets. For hot Jupiters the bow shock will not form directly between the planet and the star, causing an asymmetric distribution of mass around the exoplanet and hence an asymmetric transit. As the planet orbits thorough varying wind conditions, the strength and geometry of its bow shock will change, thus producing transits of varying shape. We model this process using magnetic maps of HD 189733 taken one year apart, coupled with a 3D stellar wind model, to determine the local stellar wind conditions throughout the orbital path of the planet. We predict the time-varying geometry and density of the bow shock that forms around the magnetosphere of the planet and simulate transit light curves. Depending on the nature of the stellar magnetic field, and hence its wind, we find that both the transit duration and ingress time can vary when compared to optical light curves. We conclude that consecutive near-UV transit light curves may vary significantly and can therefore provide an insight into the structure and evolution of the stellar wind.Comment: 9 Pages, 7 figures. Accepted for publication in Monthly Notices of The Royal Astronomical Societ

    Using Kepler transit observations to measure stellar spot belt migration rates

    Full text link
    Planetary transits provide a unique opportunity to investigate the surface distributions of star spots. Our aim is to determine if, with continuous observation (such as the data that will be provided by the Kepler mission), we can in addition measure the rate of drift of the spot belts. We begin by simulating magnetic cycles suitable for the Sun and more active stars, incorporating both flux emergence and surface transport. This provides the radial magnetic field distribution on the stellar surface as a function of time. We then model the transit of a planet whose orbital axis is misaligned with the stellar rotation axis. Such a planet could occult spots at a range of latitudes. This allows us to complete the forward modelling of the shape of the transit lightcurve. We then attempt the inverse problem of recovering spot locations from the transit alone. From this we determine if transit lightcurves can be used to measure spot belt locations as a function of time. We find that for low-activity stars such as the Sun, the 3.5 year Kepler window is insufficient to determine this drift rate. For more active stars, it may be difficult to distinguish subtle differences in the nature of flux emergence, such as the degree of overlap of the "butterfly wings". The rate and direction of drift of the spot belts can however be determined for these stars. This would provide a critical test of dynamo theory.Comment: 5 pages. Accepted for publication in Monthly Notices of the Royal Astronomical Society Letter

    Trajectory Guidance for Mars Robotic Precursors: Aerocapture, Entry, Descent, and Landing

    Get PDF
    Future crewed missions to Mars require improvements in landed mass capability beyond that which is possible using state-of-the-art Mars Entry, Descent, and Landing (EDL) systems. Current systems are capable of an estimated maximum landed mass of 1-1.5 metric tons (MT), while human Mars studies require 20-40 MT. A set of technologies were investigated by the EDL Systems Analysis (SA) project to assess the performance of candidate EDL architectures. A single architecture was selected for the design of a robotic precursor mission, entitled Exploration Feed Forward (EFF), whose objective is to demonstrate these technologies. In particular, inflatable aerodynamic decelerators (IADs) and supersonic retro-propulsion (SRP) have been shown to have the greatest mass benefit and extensibility to future exploration missions. In order to evaluate these technologies and develop the mission, candidate guidance algorithms have been coded into the simulation for the purposes of studying system performance. These guidance algorithms include aerocapture, entry, and powered descent. The performance of the algorithms for each of these phases in the presence of dispersions has been assessed using a Monte Carlo technique

    Flight mechanics experiment onboard nasa’s zero gravity aircraft

    Get PDF
    This paper presents a method to promote STEM (Science, Technology, Engineering, and Mathematics) education through participation in a reduced gravity program with NASA (National Aeronautics and Space Administration). Microgravity programs with NASA provide students with a unique opportunity to conduct scientific research with innovative and creative solutions through hands-on experimental design and testing in reduced gravity conditions. A group of undergraduate students from California State Polytechnic University, Pomona, participated in the NASA’s SEED (Systems Engineering Educational Discovery) Reduced Gravity Program, which focuses on addressing systems engineering challenges in microgravity. The team worked with a NASA Principal Investigator on a project to build and fly a prototype test article to demonstrate emergency atmospheric reentry with single-axis control. Through this experience, the team was able to gain hands-on experience with spacecraft instrumentation and learn valuable lessons in teamwork and systems engineering that can be applied to real-world situations. As part of the SEED program, the team shared its experience with local high schools in order to spark interest in STEM-related fields in the next generation of scientists and engineers.Peer Reviewe

    Testing the recovery of stellar rotation signals from Kepler light curves using a blind hare-and-hounds exercise

    Get PDF
    We present the results of a blind exercise to test the recoverability of stellar rotation and differential rotation in Kepler light curves. The simulated light curves lasted 1000 days and included activity cycles, Sun-like butterfly patterns, differential rotation and spot evolution. The range of rotation periods, activity levels and spot lifetime were chosen to be representative of the Kepler data of solar like stars. Of the 1000 simulated light curves, 770 were injected into actual quiescent Kepler light curves to simulate Kepler noise. The test also included five 1000-day segments of the Sun's total irradiance variations at different points in the Sun's activity cycle. Five teams took part in the blind exercise, plus two teams who participated after the content of the light curves had been released. The methods used included Lomb-Scargle periodograms and variants thereof, auto-correlation function, and wavelet-based analyses, plus spot modelling to search for differential rotation. The results show that the `overall' period is well recovered for stars exhibiting low and moderate activity levels. Most teams reported values within 10% of the true value in 70% of the cases. There was, however, little correlation between the reported and simulated values of the differential rotation shear, suggesting that differential rotation studies based on full-disk light curves alone need to be treated with caution, at least for solar-type stars. The simulated light curves and associated parameters are available online for the community to test their own methods.Comment: Accepted for publication in MNRAS. Accepted, 13 April 2015. Received, 26 March 2015; in original form, 9 November 201

    Mars Science Laboratory Entry Guidance Improvements for Mars 2018 (DRAFT)

    Get PDF
    In 2011, the Mars Science Laboratory (MSL) will be launched in a mission to deliver the largest and most capable rover to date to the surface of Mars. A follow on MSL-derived mission, referred to as Mars 2018, is planned for 2018. Mars 2018 goals include performance enhancements of the Entry, Descent and Landing over that of its predecessor MSL mission of 2011. This paper will discuss the main elements of the modified 2018 EDL preliminary design that will increase performance on the entry phase of the mission. In particular, these elements will increase the parachute deploy altitude to allow for more time margin during the subsequent descent and landing phases and reduce the delivery ellipse size at parachute deploy through modifications in the entry reference trajectory design, guidance trigger logic design, and the effect of additional navigation hardware
    • …
    corecore