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Abstract. Future crewed missions to Mars require improvements in landed mass 
capability beyond that which is possible using state-of-the-art Mars Entry, Descent, 
and Landing (EDL) systems.  Current systems are capable of an estimated maximum 
landed mass of 1-1.5 metric tons (MT), while human Mars studies require 20-40 MT. 
A set of technologies were investigated by the EDL Systems Analysis (SA) project to 
assess the performance of candidate EDL architectures. A single architecture was 
selected for the design of a robotic precursor mission, entitled Exploration Feed 
Forward (EFF), whose objective is to demonstrate these technologies. In particular, 
inflatable aerodynamic decelerators (IADs) and supersonic retro-propulsion (SRP) 
have been shown to have the greatest mass benefit and extensibility to future 
exploration missions. In order to evaluate these technologies and develop the 
mission, candidate guidance algorithms have been coded into the simulation for the 
purposes of studying system performance. These guidance algorithms include 
aerocapture, entry, and powered descent. The performance of the algorithms for each 
of these phases in the presence of dispersions has been assessed using a Monte Carlo 
technique.  

 

Introduction  

The development of the EFF study evolved from DRA5.01, the EDL-SA Year 1 Exploration-class 

study2, and recent technology developments. Primary technology recommendations from the EDL-SA 

Year 1 Exploration study included Hypersonic Inflatable Aerodynamic Decelerators (HIADs), rigid 

aeroshells, and SRP. Since the conclusion of the Year 1 study, development has continued in NASA 

technology programs on the Inflatable Re-entry Vehicle Experiment’s (IRVE) inflatable structure 

concept and ablator and insulator TPS materials. The continued development has led to an in increase 

in maturity in inflatable aeroshell technology. Previous work has shown the potential for large arrival 

mass reductions234. Additionally, the development of ALHAT sensors for lunar missions prompted the 

desire for detailed simulation analysis of a similar system for Mars missions.  

Resources available for the EDL-SA Year 2 EFF work necessitated the selection of a single 

architecture class that would enable analysis of the maximum number of feed forward technologies. 

The baseline architecture utilizes a Dual HIAD system and SRP. The selected HIAD sizes were a 14 

m diameter HIAD for aerocapture and 8 m HIAD for entry, based on a maximized landed payload 

mass optimization. EFF assumed a maximum launch mass capability of a Delta IV-H (7.2 mt) and an 

arrival velocity at Mars of 7.3 km/s, which corresponds to the 2024 opportunity.  

The EFF mission design begins at Mars arrival. An aerocapture maneuver is used to slow the 

vehicle from a hyperbolic orbital energy to an elliptical energy by utilizing the atmospheric drag.  The 
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mission design assumes that a period of time is spent in orbit for checkout prior to entry. A de-orbit 

burn is then performed to initiate the entry sequence and drive the vehicle toward the atmosphere. 

Once the atmospheric drag forces increase above a threshold, bank modulation is accomplished 

according to calculations provided by the entry guidance. Following the entry phase and jettison of 

the heat shield, a supersonic retro-propulsion (SRP) phase is initiated. During the SRP phase, the 

remaining vehicle velocity is reduced using a propulsive method with thrust magnitude and thrust 

direction calculations provided by the guidance.  The guidance can dynamically retarget the landing 

site real-time to avoid hazards. The SRP phase culminates with safe touchdown on the Martian 

surface.  

A simulation was developed and used to run initial integrated GNC performance and evaluate of 

SRP for Hazard Detection and Avoidance (HDA) and Terrain Relative Navigation (TRN).  The EFF 

simulation includes 6DOF entry with Apollo entry guidance and an LQR bank angle controller and 

3DOF powered descent with Apollo powered descent guidance and a pseudo controller.  The ALHAT 

Extended Kalman filter (EKF) is also included in the simulation, but it does not include TRN update 

capability. However, statistically-based IMU, startracker, altimeter and velocimeter models are 

integrated in the simulation and utilized in the analysis. 

 

Aerocapture Performance 

The aerocapture portion of the EFF study was completed using four guidance algorithms, 

however, results included here are from the HYPAS algorithm only. These results were generated 

using HYPAS in a 6DOF simulation with an LQR bank angle controller and an IMU to produce 

navigation states.   

Hybrid Predictor-Corrector Aerocapture Scheme (HYPAS) 

 HYPAS is an analytical predictor-corrector algorithm that was developed and selected for the 

Aeroassist Fight Experiment, an aerocapture demonstrator mission that was canceled before launch. It 

has been used in numerous human and robotic exploration mission studies over the last 10 years for 

Earth and Mars, and has been proven to be robust to a wide variety of L/D, ballistic coefficients, 

atmospheres, entry conditions, and target orbits. It was considered for both the Mars Surveyor 

Program 2001 mission, and the CNES Mars 2005 Sample Return Orbiter, and later, the CNES Mars 

2007 Premier Mission. Unfortunately all these missions were canceled before launch. HYPAS targets 

a lifting vehicle through the atmosphere to a desired exit orbit apoapsis and inclination by using an 

analytically-derived guidance algorithm based on deceleration due to drag and altitude rate error 

feedback to determine the bank angle magnitude, and the inclination error to determine bank 

direction. 



Nominal Configuration Inputs 

The primary nominal aerocapture parameters used in the controllability analysis are given in 

Table 1.  

Table 1. Nominal Aerocapture Parameters 

 

These inputs are used to create the baseline EFF aerocapture configuration. The HIAD diameter 

was sized to satisfy a 3-sigma peak heat rate constraint of 50 W/cm2 keeping in mind the minimum 

diameter constraint to prevent flow impingement. Also the budgeted delta-V required to clean up the 

post-aerocapture orbit to match target orbit was constrained to 250 m/s. The clean up burn was 

modeled as a 3-burn maneuver that included (1) an apoapsis raise/lower maneuver, (2) a plane change 

maneuver, and (3) a periapsis raise maneuver.  

The Monte Carlo dispersions used in this analysis are provided in Table 2, with additional 

dispersions placed on the IMU. These dispersions were chosen to be intentionally overly conservative 

in order to stress the guidance, and 8000 cases were run for each set of Monte Carlo results.  

 
 
 
 
 
 
 
 
 
 
 



Table 2 Dispersions 

 

Aerocapture Monte Carlo Results 

Figure 1 shows aerocapture heat rate and V results for the nominal EFF configuration given in 

Table 1, which uses an L/D of 0.25 and targets a post-aerocapture apoapsis of 500km. The histogram 

of heat rate shows these cases essentially met the 3-sigma peak heat rate requirement by not 

significantly exceeding 50 W/cm2, and the maximum delta-V required to clean up the post-

aerocapture orbit never approaches the 250 m/s budget. Additionally, the apoapsis values in this 

configuration form a very tight group around 500km, which demonstrates that an L/D of 0.25 is 

sufficient to hit the target apoapsis for this entry speed and target orbit. 



     

Figure 1.  Heat Rate and Total V for EFF-1 Aerocapture  

 

Three trade studies were completed based off the nominal configuration to develop a further 

understanding of the aerocapture performance. These trade studies included considering a variation in 

L/D, the incorporation of a HIAD jettison maneuver, and a variation on post-aerocapture target orbit.  

Trade 1 Results: L/D of 0.1 Versus L/D of 0.25 

Figure 1 shows that an L/D of 0.25 is sufficient to hit the target orbit apoapsis with the inputs and 

Monte Carlo dispersions listed in Table 1 and the references. Based on inquiries from both Year 1 and 

other technology programs (i.e. IRVE), a trade was performed to determine if the vehicle would still 

be able to meet the target apoapsis, given less available lift. Therefore, this study considers 

differences in performance associated with flying at an L/D of 0.25 and an L/D of 0.10. 

Figure 2 shows the Monte Carlo results of the apoapsis and periapsis altitudes for a L/D of 0.10 

and 0.25. The vehicle with the L/D of 0.10 is able to reach the target apoapsis, but inspection of the 

performance associated with individual lower L/D cases shows instances where the guidance is fully 

saturated. Guidance saturation occurs when the guidance must command maximum lift for the entire 

trajectory, leaving it no authority to fly out additional dispersions. To remedy this, the lateral corridor 

width is expanded for the lower L/D cases resulting in larger plane change maneuver delta-V, as 

shown in Figure 3.   

 

Figure 2. Apoapsis Altitude vs Periapsis Altitude for L/D = 0.10 (left) and 0.25 (right) 

 



 

Figure 3. Plane Change Maneuver V for L/D of 0.10 (left) and 0.25 (right) 

 

 This trade shows that aerocapture using a low L/D vehicle is feasible but will likely result in larger 

propellant use. Additionally, these results are specific to the EFF configuration described. Changes to 

target orbit or entry speed may result in cases that are unable to reach the target apoapsis for a lower 

L/D vehicle. 

Trade 2 Results: Jettison Versus No Jettison 

Analyzing the results from the L/D trade study, specifically those from guidances that were 

unable to reach the target apoapsis for the lower L/D vehicle, led the team to consider alternate 

configurations to improve low L/D performance. Realizing that better performance might be achieved 

by adding an additional control parameter, consideration was given to analyzing the effect of 

jettisoning the HIAD atmospherically.  

In an attempt to increase the ability of a specific guidance to hit the target orbit apoapsis, a 

subroutine was placed in the guidance, 

which uses the current navigation states to 

calculated apoapsis at each time step. Once 

that calculated apoapsis reaches a specified 

value, the HIAD is released and the vehicle 

changes from a lifting body to drag only.  

The jettison was modeled as a step function 

in the simulation, where at one time step the 

HIAD is attached and the next it is released. 

Jettisoning the HIAD in the atmosphere also 

allows aerodynamic forces to aid in 

separation. However, specific details of 

HIAD separation, such as 6DOF jettison dynamics or transitions, were not considered in this study. 

The disadvantage of jettisoning the HIAD in the atmosphere is that it only aids in hitting the 

Figure 4. Vacuum Apoapsis and Periapsis Altitude vs. 
Time With and Without HIAD Jettison 



apoapsis target when the guidance targets an apoapsis value below the desired target. This requires a 

much steeper flight path angle and can result in guidance saturation as well as higher heat rates. The 

advantage of jettisoning the HIAD is that it allows the vehicle to hit very close to the target apoapsis 

every time by essentially fixing the apoapsis value at the jettison point and allowing the vehicle to 

coast to a lower value, as illustrated in Figure 4.  

This trade study considers the effect of the jettison vs. no jettison for vehicles with an L/D of both 

0.10 and 0.25. The first part of this study was performed for an L/D of 0.10, to determine what benefit 

the jettison maneuver might provide. Figure 5 shows the difference in apoapsis and periapsis values 

between the jettison and no jettison cases. By essentially fixing the apoapsis and periapsis values at 

the jettison point, the jettison maneuver allows the vehicle to hit the target with much better accuracy 

than the no jettison case. The smaller distribution in apoapsis and periapsis altitude values is reflected 

in Figure 5. The reduction can also be seen in distribution of periapsis raise maneuver V shown in 

Figure 6. The four points in left of Figure 5 that are above 550 km are the cases where the calculated 

apoapsis value never reached the HIAD jettison condition, thus the HIAD remains attached for the 

duration of the flight.  

The second part of the study was performed for an L/D of 0.25 to determine if the benefits of the 

jettison maneuver persist at higher values of L/D. The observed effect of the jettison maneuver was a 

tightening of both the apoapsis and periapsis performance. This is evident in Figure 7. However, the 

performance associated with the higher L/D no jettison cases suggest that no additional control 

parameter is necessary to help these cases reach their target orbit apoapsis. 

 

Figure 5. L/D = 0.10: Apoapsis vs. Periapsis Altitude for Jettison (left) and No Jettion (right)  

 



 

Figure 6. L/D = 0.10: Periapsis Raise Maneuver DV for Jettison (a) and No Jettison (b) 

 

 

Figure 7. L/D = 0.25: Apoapsis vs Periapsis Altitude for Jettison (a) and No Jettison (b) 

 

In summary the jettison maneuver does improve the vehicle’s ability to achieve a target orbit for 

any L/D. The necessity for the jettison maneuver becomes less critical at higher values of L/D and the 

decision to employ jettison for higher L/D vehicles will depend on mission specific requirements. 

Additionally, the modeling of the jettison maneuver is crude and factors such as HIAD separation and 

transitions would need to be considered if this concept were to be studied further. 

Trade 3 Results: L/D of 0.25 with 500 km Circular Target Orbit Versus 1 sol Target Orbit 

One final trade study was performed to determine the effect of changing the post-aerocapture 

target orbit for a vehicle with an L/D of 0.25. The apoapsis altitude associated with a 1 sol target orbit 

is 33,793 km, making it a much higher target and requires less energy (or V) change compared to the 

500 km circular orbit. The aerocapture maneuver performance is improved when more energy can be 

removed from the aeropass, therefore targeting a much higher apoapsis makes executing the 

aerocapture maneuver more difficult. For the higher apoapsis orbits, any error in velocity is associated 

with a large error in target apoapsis altitude, which will require a larger V to correct. Additionally, 

the lack of available corridor coupled with velocities that approach exit speeds creates the possibility 

of some cases becoming fly-bys.  



Figure 8 shows a comparison of apoapsis and periapsis altitudes for the two target orbit cases. 

Noting the difference in plotted scales, the 500 km circular orbit has a much smaller distribution. 

However, the 1 sol cases spend less time in the atmosphere and are able to maintain much higher 

periapsis values. The benefit of that is evident in the V required to clean up the periapsis value. The 

500km circular orbit requires almost ten times as much V (average 150 m/s) as is required by the 1 

sol orbit (average 40 m/s).  

In comparing the two target orbits, it is evident a large V savings is achieved by changing to a 

target orbit with a higher apoapsis altitude but the propellant savings is at the cost of increased risk of 

skip-out.  The results of this trade are specific to the nominal inputs chosen for the EFF study and 

further work should be done to determine if the risk of skipping out at this high-energy orbit increases 

as the L/D or entry velocity decreases.  

 

Figure 8. Apoapsis vs. Periapsis Altitude for the 1 sol (left) and 500 km circular (right) target orbits 

 

Aerocapture Performance Conclusions 

The nominal EFF aerocapture configuration using an L/D of 0.25 provides sufficient targeting 

capability while satisfying the constraints. The bank angle control was marginal (large number of 

trajectories saturated) for an L/D = 0.10 with no HIAD jettison, and jettisoning the HIAD while in the 

sensible atmosphere indicates a capability to improve targeting. However, further modeling of the 

jettison maneuver is necessary to determine if it is a viable option. Additionally, targeting a higher 

post-aerocapture apoapsis shows significant reduction in clean-up V, but these V savings come at a 

higher risk of skip-out. Lastly, during the EFF study, the IRVE 4 team uncovered potential dynamics 

due to flexure at the joint between the rigid heat shield and the HIAD that need to be included in 

future systems analysis studies.  

 



Entry Guidance Performance 

The entry guidance used in the Study is an Apollo-derived entry guidance5. The Apollo-derived 

entry guidance algorithm is a terminal point controller that steers the vehicle to a HIAD separation 

point (range and velocity target) through bank commands using pre-derived influence coefficients 

with respect to errors about a nominal vertical L/D reference trajectory. This reference trajectory is 

defined by range-to-go, drag acceleration, and altitude rate as a function of relative velocity (Figure 

9).  

The predicted range-to-go (Rp) is calculated as a function of drag (D) and altitude rate ( r ) errors 

with respect to the nominal reference trajectory profile and the associated influence coefficients 
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The commanded vertical component of the lift-to-drag ratio is calculated as the addition of the 

reference vertical L/D plus a function of the difference between the actual and predicted range to go 
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The commanded bank angle is then calculated as 
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where K2roll is the bank directional control (±1). The sign of K2roll is reversed each time the target 

crossrange out-of-plane central angle exceeds the reversal criterion, which is a quadratic function of 

the relative velocity. 

The partial derivatives of predicted range in equations (1) and (2) are the controller gains, which 

are derived using linear perturbation theory with the nominal reference trajectory by reverse 

integration of the differential equations adjoint to the linearized equations of motion. Optimized 

control gains for converging the dispersed trajectory are implemented in the guidance as tabular 

functions of relative velocity. Because of slow system and trajectory responses to guidance 

commands, performance is empirically enhanced by the use of the over-control gain K3 in equation 

(2) to improve range convergence behavior. 

To minimize disturbance of downrange control near the target, bank reversals are inhibited below 

a certain relative velocity magnitude. If the bank command is not in the same direction as the target at 

this point, then a final reversal is commanded prior to setting the inhibit flag. After that, a heading 

control phase is initiated in which the bank command is defined by  
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where K4 is the overcontrol gain for the heading control phase and where Cr and Dr are the crossrange 

and downrange to the target, respectively. 

A variable bank reference trajectory was selected (see Figure 9). It is known that variable bank 

reference trajectories result in smaller velocity at a given final altitude than constant bank trajectories. 

A simple variable bank profile that is known to perform well is a linear ramp followed by a constant 

value6, and this is the type of trajectory that was chosen for the Study.  

Since the Apollo guidance controls within a corridor about the reference profile to converge the 

terminal range, it is desirable to design this profile to provide as much margin as possible from the 

vehicle maneuver capability limits to accommodate dispersions. This means that bank angles of the 

nominal reference trajectory should allow sufficient margin so that, in a dispersed simulation, the 

guidance and vehicle is able to retain sufficient capability to converge the range without bank angle 

saturation. Experience has shown that the nominal bank limits can be reasonably estimated from the 

atmospheric density ρ and Cd percentage dispersions using the expression ΦCmin = cos-1(100% - ρ% - 

Cd%). In the reference trajectory, the bank value of 45° for the constant bank phase is based on this 

expression6. The nominal final altitude of the reference trajectory is determined such that all the 

powered descent dispersed cases are successful. 

 

Figure 9. Reference Bank Profile 
 

The performance was assessed using 6DOF Monte Carlo analysis comprised of 8000 runs with 

simple propagator navigation (Figure 10). Downrange error is not shown because the simulation end 

condition is based on range, thus, the downrange error is very small at separation. Downrange error at 

engine initiation is within ±200 m.  

 



 
 
 

 

 

 

 

 
 
 
 
 
 

Figure 10. Entry Performance Summary 
 

Using the dispersions defined in Error! Reference source not found., the design of the entry 

guidance is capable of achieving the engine initiation conditions such that all the powered descent 

dispersed cases can be landed successfully. However, this design of the entry guidance should not be 

considered as a final design. There is room for improvement by fine tuning and improving the 

guidance parameters that affect the performance (reference profile, over-control settings, initial flight 

path angle, drag acceleration and L/D filter time constants and the drag and altitude controller gain 

scale factors). 

 

Powered Descent Performance 

The objective of the powered descent is to steer the vehicle to a controlled touchdown using the 

main propulsion engines. The following assumptions were made for the powered descent analysis:  

 Apollo LM-derived guidance (2nd order polynomial in acceleration)7 

 Initial states for powered descent from entry Monte Carlo results 

 3-DOF pseudo control with 20 deg/sec and 5 deg/sec2 attitude limits 

 Perfect navigation  

 Target touchdown velocity is 1 m/s vertical, 0 m/s horizontal 

 Fly out all position error prior to touchdown 

 8000 case Monte Carlo 

 Dispersions as given in Error! Reference source not found. 



Figure 11 shows a depiction of the powered descent phase. The powered descent begins just after 

a 15 sec freefall phase, which is used to simulate a transition from entry and jettison of the aeroshell. 

The powered descent is about an 80 sec burn over the last 4-7 km of descent altitude. The last 5 m of 

altitude is simulated as a constant velocity phase with a 1 m/s descent rate.    

 

Figure 11 Powered Descent Nominal Trajectory 
 

  

Figure 12 shows the initial conditions for the 

powered descent. These conditions are inherited from the entry and are essentially a function of the 

entry trajectory design. The altitude range is 4-7 km, the Mach number range is 1.4 – 1.8, and the 

downrange is 8-9 km.  



 
Figure 12 Vehicle States at the Start of Powered Descent 

 

Recognizing that the entry trajectory design has significant effect on powered descent 

performance, an effort was made to choose the entry termination point such that all dispersions at the 

start of powered descent could be removed with the minimum amount of fuel. The current design 

achieves touchdown with essentially zero altitude/velocity error. If the termination altitude for entry 

were lower, some cases would not be able to successfully achieve the target touchdown conditions. If 

entry were to end at higher altitude, additional fuel would be needed for powered descent.  

Table 3 shows the propellant usage statistics at touchdown. The 99.87%-tile value for propellant 

consumed was 870.5 kg. The 0.13%-tile value for propellant remaining at touchdown was 249.5 kg. 

Given the current dispersions and entry performance, the powered descent has sufficient propellant 

margin. Further study showing the effect of navigation on powered descent is discussed in the EDL-

SA Report3,4.  

Table 3 Propellant Usage Statistics at Touchdown 

   Propellant  Propellant 

   Consumed Remaining

   kg  kg 

Mean  893.0 226.9

1‐sigma  8.1 8.1

3‐sigma  24.3 24.3

0.13%‐tile  872.9 208.3

50.00%‐tile  893.5 226.5

99.87%‐tile  911.7 247.1

 

Terrain Relative Navigation (TRN) and Hazard Detection and Avoidance (HDA) Feasibility 

A brief investigation of feasibility of both TRN and HDA was undertaken. TRN works over a 

wide range of altitude and velocity and is possible anytime sensor measurements can be taken and a 

high-quality map of the terrain is available. There are two basic forms of TRN; optical TRN, which 



uses optical cameras in the visible spectrum, and active TRN, which uses an altimeter, flash lidar, or 

other active sensor. Fundamentally, all that is needed is to ensure that this sensor has a view of the 

surface and that the navigation has a reasonable estimate of the vehicle’s inertial position. Since the 

attitude profile during the first 60 sec is well off of the vertical (see Figure 13), it can reasonably be 

assumed that TRN measurements can be taken and that TRN is feasible.  

 

Figure 13. Pitch Profile During Powered Descent 

 

Feasibility for HDA is more complex to demonstrate than for TRN. The flash lidar must scan the 

landing area, so it requires a line of sight to the landing area at the correct time during the descent. 

The lidar will be designed for optimum performance at a particular slant range from the landing site. 

The scan must occur at this distance to ensure that sufficient resolution is achieved and the full 

landing area can be scanned.  

An initial analysis of the nominal trajectory shows that HDA is feasible for the nominal by 

looking out the back side of the vehicle (in the same direction in which TRN would occur) at an 

altitude of 1 km. Figure 14 define the angles of interest. The look angle describes the angle between 

the vehicle vertical axis and the line of sight to the target. Figure 15 depicts the time history of these 

angles for the nominal trajectory. The vehicle passes through 1 km altitude at t=28 sec to touchdown. 

The look angle at this point is -14 deg, meaning the lidar would have to be mounted such that the 

landing site would be viewing along the back side of the vehicle, rather the forward facing side. 

However, in dispersed cases the look angle may be close to zero and the distribution may be both 

positive and negative at the time of the scan. This would require two sensors, one on each side of the 

vehicle. The trajectory can likely be redesigned such that all look angles are positive, for a minimal 

cost in additional propellant usage – and only would require one HDA sensor. Further investigation is 

needed before a conclusive determination can be made regarding HDA feasibility.  



 

 
Figure 14 Definition of Angles of Interest During Powered Descent  

 

 

Figure 15 Nominal Trajectory Angles of Interest 
 

 

Conclusion 

A Monte Carlo assessment of guidance and trajectory performance of a large mass robotic 

precursor mission has been completed. This mission would demonstrate a 14 m HIAD for 

aerocapture, an 8 m HIAD for entry, and supersonic retro-propulsion in the less than Mach 2 range. 

Additionally, it includes a demonstration of Terrain Relative Navigation and Hazard Detection and 

Avoidance techniques and sensors being developed by ALHAT. The results show the performance of 

the system and serve as a starting point for future large-mass robotic precursor mission development 

work. 
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