2,050 research outputs found

    Optimal Pooling in Claims Resolution Facilities

    Get PDF
    A class of nonlinear stochastic processes satysfying a "Lipschitz-type strip condition" and supplied by a linear output equation, is considered. Robust asymptotic (high-gain) state estimation for nonlinear stochastic processes via differential neural networks is discussed. A new type learning law for the weight dynamics is suggested. By a stochastic Lyapunov-like analysis (with Ito formula implementation), the stability conditions for the state estimation error as well as for the neural network weights are established. The upper bound for this error is derived. The numerical example, dealing with "module"-type nonlinearities, illustrates the effectiveness of the suggested approach

    Prescription for experimental determination of the dynamics of a quantum black box

    Full text link
    We give an explicit prescription for experimentally determining the evolution operators which completely describe the dynamics of a quantum mechanical black box -- an arbitrary open quantum system. We show necessary and sufficient conditions for this to be possible, and illustrate the general theory by considering specifically one and two quantum bit systems. These procedures may be useful in the comparative evaluation of experimental quantum measurement, communication, and computation systems.Comment: 6 pages, Revtex. Submitted to J. Mod. Op

    Spectral Line Removal in the LIGO Data Analysis System (LDAS)

    Full text link
    High power in narrow frequency bands, spectral lines, are a feature of an interferometric gravitational wave detector's output. Some lines are coherent between interferometers, in particular, the 2 km and 4 km LIGO Hanford instruments. This is of concern to data analysis techniques, such as the stochastic background search, that use correlations between instruments to detect gravitational radiation. Several techniques of `line removal' have been proposed. Where a line is attributable to a measurable environmental disturbance, a simple linear model may be fitted to predict, and subsequently subtract away, that line. This technique has been implemented (as the command oelslr) in the LIGO Data Analysis System (LDAS). We demonstrate its application to LIGO S1 data.Comment: 11 pages, 5 figures, to be published in CQG GWDAW02 proceeding

    Extracting dynamical equations from experimental data is NP-hard

    Get PDF
    The behavior of any physical system is governed by its underlying dynamical equations. Much of physics is concerned with discovering these dynamical equations and understanding their consequences. In this work, we show that, remarkably, identifying the underlying dynamical equation from any amount of experimental data, however precise, is a provably computationally hard problem (it is NP-hard), both for classical and quantum mechanical systems. As a by-product of this work, we give complexity-theoretic answers to both the quantum and classical embedding problems, two long-standing open problems in mathematics (the classical problem, in particular, dating back over 70 years).Comment: For mathematical details, see arXiv:0908.2128[math-ph]. v2: final version, accepted in Phys. Rev. Let

    The ACIGA Data Analysis programme

    Full text link
    The Data Analysis programme of the Australian Consortium for Interferometric Gravitational Astronomy (ACIGA) was set up in 1998 by the first author to complement the then existing ACIGA programmes working on suspension systems, lasers and optics, and detector configurations. The ACIGA Data Analysis programme continues to contribute significantly in the field; we present an overview of our activities.Comment: 10 pages, 0 figures, accepted, Classical and Quantum Gravity, (Proceedings of the 5th Edoardo Amaldi Conference on Gravitational Waves, Tirrenia, Pisa, Italy, 6-11 July 2003

    Asymptotic inference in system identification for the atom maser

    Full text link
    System identification is an integrant part of control theory and plays an increasing role in quantum engineering. In the quantum set-up, system identification is usually equated to process tomography, i.e. estimating a channel by probing it repeatedly with different input states. However for quantum dynamical systems like quantum Markov processes, it is more natural to consider the estimation based on continuous measurements of the output, with a given input which may be stationary. We address this problem using asymptotic statistics tools, for the specific example of estimating the Rabi frequency of an atom maser. We compute the Fisher information of different measurement processes as well as the quantum Fisher information of the atom maser, and establish the local asymptotic normality of these statistical models. The statistical notions can be expressed in terms of spectral properties of certain deformed Markov generators and the connection to large deviations is briefly discussed.Comment: 20pages, 3 figure

    Carbon isotope values of hazelnut shells: a new proxy for canopy density

    Get PDF
    Hazel (Corylus avellana) has been abundant in the vegetation of northern and central Europe since the early Holocene and has provided food and materials for humans ever since. Here we use stable carbon isotope (ή13 14 C) values of hazelnut shells to infer woodland openness based on the premise of the “canopy effect”. It is well established that plants growing in dense, shaded forests have lower carbon isotope (ή13C) values than plants growing in open areas. By measuring ή13 C values in hazelnuts collected from trees growing in different levels of light intensity, we show that the canopy effect is preserved in hazelnuts and that their ή13 C values can be used to infer woodland openness in the past. We apply the method to hazelnuts recovered from sites dated to between the Mesolithic and Iron Age (c. 7000 BCE to 1000 CE) in southern Sweden. Our results show that the nuts dated to the Mesolithic were harvested from hazels growing in a range of closed to open settings while nuts from subsequent periods were harvested from progressively more open environments. Given the abundance of hazelnuts recovered from many archaeological contexts, this method has the potential to reconstruct the microhabitats exploited by humans in the past and explore the impact of humans on their environment

    Thermal diagnostic of the Optical Window on board LISA Pathfinder

    Full text link
    Vacuum conditions inside the LTP Gravitational Reference Sensor must comply with rather demanding requirements. The Optical Window (OW) is an interface which seals the vacuum enclosure and, at the same time, lets the laser beam go through for interferometric Metrology with the test masses. The OW is a plane-parallel plate clamped in a Titanium flange, and is considerably sensitive to thermal and stress fluctuations. It is critical for the required precision measurements, hence its temperature will be carefully monitored in flight. This paper reports on the results of a series of OW characterisation laboratory runs, intended to study its response to selected thermal signals, as well as their fit to numerical models, and the meaning of the latter. We find that a single pole ARMA transfer function provides a consistent approximation to the OW response to thermal excitations, and derive a relationship with the physical processes taking place in the OW. We also show how system noise reduction can be accomplished by means of that transfer function.Comment: 20 pages, 14 figures; accepted for publication in Class. Quantum Gra

    Variability in concentrations of potentially toxic elements in urban parks from six European cities

    Get PDF
    Use of a harmonised sampling regime has allowed comparison of concentrations of copper, chromium, nickel, lead and zinc in six urban parks located in different European cities differing markedly in their climate and industrial history. Wide concentrations ranges were found for copper, lead and zinc at most sites, but for chromium and nickel a wide range was only seen in the Italian park, where levels were also considerably greater than in other soils. As might be expected, the soils from older cities with a legacy of heavy manufacturing industry (Glasgow, Torino) were richest in potentially toxic elements (PTEs); soils from Ljubljana, Sevilla and Uppsala had intermediate metal contents, and soils from the most recently established park, in the least industrialised city (Aveiro), displayed lowest concentrations. When principal component analysis was applied to the data, associations were revealed between pH and organic carbon content; and between all five PTEs. When pH and organic carbon content were excluded from the PCA, a distinction became clear between copper, lead and zinc (the "urban" metals) on the one hand, and chromium and nickel on the other. Similar results were obtained for the surface (0-10 cm depth) and sub-surface (10-20 cm depth) samples. Comparisons with target or limit concentrations were limited by the existence of different legislation in different countries and the fact that few guidelines deal specifically with public-access urban soils intended for recreational use
    • 

    corecore