29 research outputs found

    Elucidation de la structure des métabolites secondaires d'Hypoxylon fragiforme par spectrométrie de masse haute résolution et réactions ions-molécules en phase gazeuse

    No full text
    Fungi produce a wide variety of biologically active compounds/metabolites that could be used for medicinal and pharmaceutical purposes. Mitorubrines, members of the family of azaphilones, constitute a particularly interesting set of structurally diverse secondary metabolites, exhibiting a wide range of biological activities (e.g.antimicrobial, antibacterial, antimalarial). This work describes the development of several mass spectrometry-based approaches to solve the natural structural diversity and complexity of azaphilones extracted from Hypoxylon fragiforme fungus. The first part of this manuscript is dedicated to the development and validation of an analytical methodology involving liquid chromatography coupled to high resolution mass spectrometry for the efficient and accurate detection of trace-level azaphilones in complex fungal extracts. Further collision-induced dissociation and hydrogen/deuterium exchange experiments were performed to fully elucidate and characterize the azaphilones and their nitrogenized analogues from Hypoxylon fragiforme. The second part is devoted to the application of these different analytical strategies to the in-depth characterization of a novel family of secondary metabolites derived from azaphilones, the mitorubramines. Lastly, these different secondary metabolites were further purified to confirm their chemical structures by NMR spectroscopyLes champignons produisent une grande variété de composés/métabolites biologiquement actifs qui peuvent être utilisés à des fins médicinales et pharmaceutiques. Les mitorubrines, membres de la famille des azaphilones, constituent un ensemble particulièrement intéressant de métabolites secondaires, présentant une grande étendue d'activités biologiques (e.g. antimicrobienne, antibactérienne, antipaludique). Ce travail présente le développement de plusieurs approches de spectrométrie de masse permettant de résoudre la diversité structurelle naturelle et la complexité des azaphilones extraits des champignons Hypoxylon fragiforme. La première partie de ce manuscrit est dédiée au développement et à la validation d'une méthodologie analytique impliquant la chromatographie liquide couplée à la spectrométrie de masse haute résolution pour la détection efficace et précise de traces d'azaphilones dans des extraits fongiques complexes. En outre, des expériences de spectrométrie de masse en mode tandem (par dissociation induite par collision, CID) et d'échange hydrogène/deutérium ont été effectuées pour élucider et caractériser les azaphilones et leurs analogues azotés chez Hypoxylon fragiforme. La deuxième partie est consacrée à l'application de ces différentes stratégies analytiques pour la caractérisation approfondie d'une nouvelle famille de métabolites secondaires dérivés des azaphilones, les mitorubramines. Enfin, ces différents métabolites secondaires ont été purifiés pour confirmer leur structure chimique par spectroscopie RM

    Quantification of trans-resveratrol and its metabolites in human plasma using ultra-high performance liquid chromatography tandem quadrupole-orbitrap mass spectrometry

    No full text
    International audienceTrans-resveratrol is a stilbene polyphenol with a large spectrum of biological activities. This is why it is widely studied in terms of activities, bioavailability and quantitation in different foods, beverages and biological matrices. Different analytical methods are employed for its quantitation. In this study a quadrupole-orbitrap tandem mass spectrometer coupled to a reverse phase ultra-high performance liquid chromatography is applied to a quantitation of trans-resveratrol and its metabolites trans-resveratrol-3-O-beta-D-glucuronide, trans-resveratrol-4'-O-beta-D-glucuronide, trans-resveratrol-3-O-sulfate, a,b-dihydroresveratrol, a,b-dihydroresveratrol-glucuronide, a,b-dihydroresveratrol-glucuronide-sulfate, a,b-dihydroresveratrol-sulfate, trans-resveratrol-3,5-O-beta-D-diglucuronide, trans-resveratrol-3,4'-O-D-beta-diglucuronide, trans-resveratrol-3-O-beta-D-glucuronide-sulfate and trans-resveratrol-4'-O-beta-D-glucuronide-sulfate in human plasma. MS/MS experiments coupled to a high resolving power and accurate mass measurements as well as the use of labeled internal standards enabled the achievement of linear calibration curves across the four orders of magnitude concentration ranges. The method was validated in terms of specificity and selectivity, accuracy and precision, sensitivity and matrix effect and can be now applied to pharmacokinetic studies or routine analysis. In addition, the application of quadrupole-orbitrap mass spectrometer to the quantitation of trans-resveratrol and its metabolites provides acquisition of full collision induced dissociation spectra of analyzed compounds giving place to the structural characterization and sensitivity and linear concentration ranges respecting the accuracy and precision, specificity and selectivity requirements

    Carnosic Acid and Carnosol, Two Major Antioxidants of Rosemary, Act through Different Mechanisms

    No full text
    International audienceCarnosic acid, a phenolic diterpene specific to the Lamiaceae family, is highly abundant in rosemary (Rosmarinus officinalis). Despite numerous industrial and medicinal/pharmaceutical applications of its antioxidative features, this compound in planta and its antioxidant mechanism have received little attention, except a few studies of rosemary plants under natural conditions. In vitro analyses, using high-performance liquid chromatography-ultraviolet and luminescence imaging, revealed that carnosic acid and its major oxidized derivative, carnosol, protect lipids from oxidation. Both compounds preserved linolenic acid and monogalactosyldiacylglycerol from singlet oxygen and from hydroxyl radical. When applied exogenously, they were both able to protect thylakoid membranes prepared from Arabidopsis (Arabidopsis thaliana) leaves against lipid peroxidation. Different levels of carnosic acid and carnosol in two contrasting rosemary varieties correlated with tolerance to lipid peroxidation. Upon reactive oxygen species (ROS) oxidation of lipids, carnosic acid was consumed and oxidized into various derivatives, including into carnosol, while carnosol resisted, suggesting that carnosic acid is a chemical quencher of ROS. The antioxidative function of carnosol relies on another mechanism, occurring directly in the lipid oxidation process. Under oxidative conditions that did not involve ROS generation, carnosol inhibited lipid peroxidation, contrary to carnosic acid. Using spin probes and electron paramagnetic resonance detection, we confirmed that carnosic acid, rather than carnosol, is a ROS quencher. Various oxidized derivatives of carnosic acid were detected in rosemary leaves in low light, indicating chronic oxidation of this compound, and accumulated in plants exposed to stress conditions, in parallel with a loss of carnosic acid, confirming that chemical quenching of ROS by carnosic acid takes place in planta

    Genipap (Genipa americana L.) juice intake biomarkers after medium-term consumption

    No full text
    International audienceGenipap (Genipa americana L.) is an exotic fruit largely consumed and well known, in Amazonian pharmacopeia, to treat anemia, measles and uterine cancer. It is also used as a diuretic, digestive, healing, laxative and antiseptic. The aim of this study was to apply an untargeted metabolomics strategy to determine biomarkers of food intake after short-term consumption of genipap juice. Sixteen healthy adult men were administered jenipap juice (250 mL) twice a day for three weeks. Before and after the three weeks of consumption. the subjects drank a control drink, and they consumed a standard diet. Urine was collected after 0-6 h, 6-12 h and 12-24 h. An ultrahigh-performance liquid chromatography-mass spectrometry (UHPLC-MS)-based metabolomics approach was applied to analyze the urine samples. Principal components analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were performed to highlight experimental differences between groups. The value of the area under the curve (AUC) of the receiver operator characteristic (ROC) curve validated the identified biomarkers. Thirty-one statistically affected urinary metabolites were putatively identified and were mainly related to iridoids family, medium-chain fatty acids, and polyphenols. Also a group of urinary markers including dihydrocaffeic acid (DHCA), 1-(4-hydroxyphenyl)-1,2-propanediol and 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid were established as biomarkers of genipap consumption. Our findings have established a comprehensive panel of changes in the urinary metabolome and provided information to monitor endogenous alterations that are linked to genipap juice intake. These data should be used in further studies to understand the health implications of genipap juice consumption

    Relationships between Gut Microbiota, Metabolome, Body Weight, and Glucose Homeostasis of Obese Dogs Fed with Diets Differing in Prebiotic and Protein Content

    No full text
    International audienceObesity is a major issue in pets and nutritional strategies need to be developed, like promoting greater protein and fiber intake. This study aimed to evaluate the effects of dietary protein levels and prebiotic supplementation on the glucose metabolism and relationships between the gut, microbiota, metabolome, and phenotype of obese dogs. Six obese Beagle dogs received a diet containing 25.6% or 36.9% crude protein, with or without 1% short-chain fructo-oligosaccharide (scFOS) or oligofructose (OF), in a Latin-square study design. Fecal and blood samples were collected for metabolite analysis, untargeted metabolomics, and 16S rRNA amplicon sequencing. A multi-block analysis was performed to build a correlation network to identify relationships between fecal microbiota, metabolome, and phenotypic variables. Diets did not affect energy homeostasis, but scFOS supplementation modulated fecal microbiota composition and induced significant changes of the fecal metabolome. Bile acids and several amino acids were related to glucose homeostasis while specific bacteria gathered in metavariables had a high number of links with phenotypic and metabolomic parameters. It also suggested that fecal aminoadipate and hippurate act as potential markers of glucose homeostasis. This preliminary study provides new insights into the relationships between the gut microbiota, the metabolome, and several phenotypic markers involved in obesity and associated metabolic dysfunctions

    Simple Fast Quantification of Cholecalciferol, 25-Hydroxyvitamin D and 1,25-Dihydroxyvitamin D in Adipose Tissue Using LC-HRMS/MS

    No full text
    International audienceVitamin D metabolism is actively modulated in adipose tissue during obesity. To better investigate this process, we develop a specific LC-HRMS/MS method that can simultaneously quantify three vitamin D metabolites, i.e., cholecalciferol, 25-hydroxyvitamin D 3 (25(OH)D 3), and 1,25-dihydroxyvitamin D 3 (1,25(OH) 2 D 3) in a complex matrix, such as mouse adipose tissue and plasma. The method uses pretreatment with liquid-liquid or solid-phase extraction followed by derivatization using Amplifex ® reagents to improve metabolite stability and ionization efficiency. Here, the method is optimized by co-eluting stable isotope-labelled internal standards to calibrate each analogue and to spike biological samples. Intra-day and inter-day relative standard deviations were 0.8-6.0% and 2.0-14.4%, respectively for the three derivatized metabolites. The limits of quantification (LoQ) achieved with Amplifex ® derivatization were 0.02 ng/mL, 0.19 ng/mL, and 0.78 ng/mL for 1,25(OH) 2 D 3 , 25(OH)D 3 and cholecalciferol, respectively. Now, for the first time, 1,25(OH) 2 D 3 can be co-quantified with cholecalciferol and 25(OH)D 3 in mouse adipose tissue. This validated method is successfully applied to study the impact of obesity on vitamin D status in mice

    Four days high fat diet modulates vitamin D metabolite levels and enzymes in mice

    No full text
    International audienceObesity is classically associated with low serum total and free 25(OH)D. Hypotheses have been advanced to explain this observation but mechanisms remain poorly understood, and notably priming events that could explain such association. We investigated the impact of short-term high fat (HF) diet to investigate early events occurring in vitamin D metabolism. Male C57BL/6J mice were fed with a control diet (control group) and HF diet for 4 days. HF fed mice displayed similar body weight to control mice but significantly increased adiposity, together with a decrease of free 25(OH)D concentrations, which could be explained at least in part by a decrease of Cyp2r1 and Cyp3a11 expression in the liver. An increase of 1,25(OH) 2 D concentration was also observed and could be explained by a decrease of Cyp24a1 expression observed in the kidney. In white adipose tissue (WAT), no modification of vitamin D metabolites quantity detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Nevertheless, an increase of Cyp2r1 and Cyp27a1 mRNA expression and a decrease of Cyp27b1 mRNA expression could suggest a possible storage of 25(OH)D in WAT at long-term. Our data are supportive of an active role of HF diet in mediating a priming effect leading the well-established perturbation of the vitamin D metabolism associated with obesity, including a decrease of free 25(OH)D and modulation of expression of genes involved in vitamin D metabolism

    Multigenerational Exposure to Uranium Changes Sperm Metabolome in Rats

    No full text
    International audienceMale infertility is a major public health issue that can be induced by a host of lifestyle risk factors such as environment, nutrition, smoking, stress, and endocrine disruptors. Regarding the human population exposed to uranium, it is necessary to explore these effects on male reproduction in multigenerational studies. The sensitivity of mass spectrometry (MS)-based methods has already proved to be extremely useful in metabolite identification in rats exposed to low doses of uranium, but also in human sperm. We applied this method to rat sperm over three generations (F0, F1 and F2) with multigenerational uranium exposure. Our results show a significant content of uranium in generation F0, and a reduction in the pregnancy rate only in generation F1. Based on principal component analysis (PCA), we observed discriminant profiles between generations. The partial least squares discriminant analysis (PLS-DA) of the 48 annotated variables confirmed that parental exposure of generation F0 (during both the preconceptional and prenatal periods) can have metabolic effects on spermatozoa for the next two generations. Metabolomics applied to epididymal spermatozoa is a novel approach to detecting the multigenerational effects of uranium in an experimental model, but could be also recommended to identify potential biomarkers evaluating the impact of uranium on sperm in exposed infertile men
    corecore