201 research outputs found
Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus
A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk
Current research in biotechnology: Exploring the biotech forefront
Biotechnology is an evolving research field that covers a broad range of topics. Here we aimed to evaluate the latest research literature, to identify prominent research themes, major contributors in terms of institutions, countries/regions, and journals. The Web of Science Core Collection online database was searched to retrieve biotechnology articles published since 2017. In total, 12,351 publications were identified and analyzed. Over 8500 institutions contributed to these biotechnology publications, with the top 5 most productive ones scattered over France, China, the United States of America, Spain, and Brazil. Over 140 countries/regions contributed to the biotechnology research literature, led by the United States of America, China, Germany, Brazil, and India. Journal of Bioscience and Bioengineering was the most productive journal in terms of number of publications. Metabolic engineering was among the most prevalent biotechnology study themes, and Escherichia coli and Saccharomyces cerevisiae were frequently used in biotechnology investigations, including the biosynthesis of useful biomolecules, such as myo-inositol (vitamin B8), monoterpenes, adipic acid, astaxanthin, and ethanol. Nanoparticles and nanotechnology were identified too as emerging biotechnology research themes of great significance. Biotechnology continues to evolve and will remain a major driver of societal innovation and development
Staurosporine-induced apoptosis and hydrogen peroxide-induced necrosis in two human breast cell lines
Investigation of prognostic value of polymorphisms within estrogen metabolizing genes in Lithuanian breast cancer patients
Comparison of chemical composition and biological activities of Algerian seed oils of Pistacia lentiscus L., Opuntia ficus indica (L.) mill. and Argania spinosa L. Skeels
Many parameters can influence the chemical profiles and the biological activities of seed oils. It was therefore of interest to study Algerian seed oils, whose caharacteristics are not well known. So, the physicochemical properties and nutrient profiles (fatty acids, phytosterols, polyphenols) of seed oils from Pistacia lentiscus L. (PL), Opuntia ficus-indica (L.) mill. (OFI), and Argania spinosa L. Skeels (AS) were determined. The antioxidant and antimicrobial activities of the oils were also characterized. The physicochemical parameters of the oils are closely related to the standard values. PL oil is distinguished by its high content of pigments. AS and OFI oils were dominated by linoleic acid, at 39.1 ± 0.5 and 55.8 ± 0.6%, respectively, while the oleic acid (41.2 ± 0.4%) was the major fatty acid in the oil of PL. The analysis of phytosterol levels showed that β-sitosterol was present in high amounts in the three oils, of 387.44 ± 3.04, 87.92 ± 0.72 and 58.79 ± 1.19 mg/100 g of oil in OFI, AS and PL oils, respectively. The characterization of phenolics revealed only the presence of protocatechuic acid in the PL oil and p-coumaric and t-cinnamic acids in AS oil. The antioxidant activity was evaluated by using the phosphomolybdate assay and the scavenger activity of the DPPH• radical. PL and OFI oils showed the highest antioxidant capacity compared with AS. Very weak antibacterial and antifungal effects, evaluated against four bacterial and six fungal strains, were found. Given the chemical characteristics and antioxidant properties of Algerian PL, OFI and AS seed oils, our results highlight the potential benefit of these oils for human health
Oxysterols, age-related-diseases and nutritherapy: Focus on 7-ketocholesterol and 7β-hydroxycholesterol
Age-related diseases are often associated with a disruption of RedOx balance that can lead to lipid peroxidation with the formation of oxysterols, especially those oxidized on carbon-7: 7-ketocholesterol (also known as 7-oxo-cholesterol) and 7β-hydroxycholesterol. Like cholesterol, these oxysterols have 27 carbons, they are composed of a sterane nucleus and have a hydroxyl function in position 3. The oxysterols 7-ketocholesterol and 7β-hydroxycholesterol are mainly formed by cholesterol autoxidation and are biomarkers of oxidative stress. These two oxysterols are frequently found at increased levels in the biological fluids (plasma, cerebrospinal fluid), tissues and/or organs (arterial wall, retina, brain) of patients with age-related diseases, especially cardiovascular diseases, neurodegenerative diseases (mainly Alzheimer's disease), ocular diseases (cataract, age-related macular degeneration), and sarcopenia. Depending on the cell type considered, 7-ketocholesterol and 7β-hydroxycholesterol induce either caspase- dependent or -independent types of cell death associated with mitochondrial and peroxisomal dysfunctions, autophagy and oxidative stress. The caspase dependent type of cell death associated with oxidative stress and autophagy is defined as oxiapoptophagy. These two oxysterols are also inducers of inflammation. These biological features associated with the toxicity of 7-ketocholesterol, and 7β-hydroxycholesterol are often observed in patients with age-related diseases, suggesting an involvement of these oxysterols in the pathophysiology of these disorders. The cytotoxic effects of 7-ketocholesterol and 7β-hydroxycholesterol are counteracted on different cell models by representative nutrients of the Mediterranean diet: ω3 and ω9 fatty acids, polyphenols, and tocopherols. There are also evidences, mainly in cardiovascular diseases, of the benefits of α-tocopherol and phenolic compounds. These in vitro and in vivo observations on 7-ketocholesterol and 7β-hydroxycholesterol, which are frequently increased in age-related diseases, reinforce the interest of nutritherapeutic treatments to prevent and/or cure age-related diseases currently without effective therapies
Natural products in drug discovery: advances and opportunities
Natural products and their structural analogues have historically made a major contribution to pharmacotherapy, especially for cancer and infectious diseases. Nevertheless, natural products also present challenges for drug discovery, such as technical barriers to screening, isolation, characterization and optimization, which contributed to a decline in their pursuit by the pharmaceutical industry from the 1990s onwards. In recent years, several technological and scientific developments — including improved analytical tools, genome mining and engineering strategies, and microbial culturing advances — are addressing such challenges and opening up new opportunities. Consequently, interest in natural products as drug leads is being revitalized, particularly for tackling antimicrobial resistance. Here, we summarize recent technological developments that are enabling natural product-based drug discovery, highlight selected applications and discuss key opportunities
BACE1 RNAi restores the composition of phosphatidylethanolamine-derivates related to memory improvement in aged 3xTg-AD mice
ABSTRACT: β-amyloid (Aβ) is produced by the β-secretase 1 (BACE1)-mediated enzymatic cleavage of the amyloid precursor protein through the amyloidogenic pathway, making BACE1 a therapeutic target against Alzheimer’s disease (AD). Alterations in lipid metabolism are a risk factor for AD by an unknown mechanism. The objective of this study was to determine the effect of RNA interference against BACE1 (shBACEmiR) on the phospholipid profile in hippocampal CA1 area in aged 3xTg-AD mice after 6 and 12 months of treatment compared to aged PS1KI mice. The shBACEmiR treatment induced cognitive function recovery and restored mainly the fatty acid composition of lysophosphatidylethanolamine and etherphosphatidylethanolamine, reduced the cPLA2’s phosphorylation, down-regulated the levels of arachidonic acid and COX2 in the hippocampi of 3xTg-AD mice. Together, our findings suggest, for the first time, that BACE1 silencing restores phospholipids composition which could favor the recovery of cellular homeostasis and cognitive function in the hippocampus of triple transgenic AD mice.
Keywords: Alzheimer’s disease, phospholipids, BACE1, RNA interference, hippocampus, cognitive functio
Enhancing human gut health: Global innovations in dysbiosis management
The microbiota, comprising all the microorganisms within the body, plays a critical role in maintaining good health. Dysbiosis represents a condition resulting from an imbalance or alteration of the microbiota. This study comprehensively investigates the patent literature on dysbiosis over the past 20 years
Frequent allelic losses at 11q24.1–q25 in young women with breast cancer: association with poor survival
- …
