176 research outputs found

    Magnetic Interactions in Pre-main-sequence Binaries

    Full text link
    Young stars typically have strong magnetic fields, so that the magnetospheres of newly formed close binaries can interact, dissipate energy, and produce synchrotron radiation. The V773 Tau A binary system, a pair of T Tauri stars with a 51 day orbit, displays such a signature, with peak emission taking place near periastron. This paper proposes that the observed emission arises from the change in energy stored in the composite magnetic field of the system. We model the fields using the leading order (dipole) components and show that this picture is consistent with current observations. In this model, the observed radiation accounts for a fraction of the available energy of interaction between the magnetic fields from the two stars. Assuming antisymmetry, we compute the interaction energy E int as a function of the stellar radii, the stellar magnetic field strengths, the binary semimajor axis, and orbital eccentricity, all of which can be measured independently of the synchrotron radiation. The variability in time and energetics of the synchrotron radiation depend on the details of the annihilation of magnetic fields through reconnection events, which generate electric fields that accelerate charged particles, and how those charged particles, especially fast electrons, are removed from the interaction region. However, the major qualitative features are well described by the background changes in the global magnetic configuration driven by the orbital motion. The theory can be tested by observing a collection of pre-main-sequence binary systems.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90771/1/0004-637X_743_2_175.pd

    Incremental Contributions of FbaA and Other Impetigo-Associated Surface Proteins to Fitness and Virulence of a Classical Group A Streptococcal Skin Strain

    Get PDF
    Group A streptococci (GAS) are highly prevalent human pathogens whose primary ecological niche is the superficial epithelial layers of the throat and/or skin. Many GAS strains having a strong tendency to cause pharyngitis are distinct from strains that tend to cause impetigo; thus, genetic differences between them may confer host tissue-specific virulence. In this study, the FbaA surface protein gene is found to be present in most skin specialist strains, but largely absent from a genetically-related subset of pharyngitis isolates. Using an DeltafbaA mutant constructed in the impetigo strain Alab49, loss of FbaA resulted in a slight but significant decrease in GAS fitness in a humanized mouse model for impetigo; the DeltafbaA mutant also exhibited decreased survival in whole human blood due to phagocytosis. Using assays with highly sensitive outcome measures, Alab49DeltafbaA was compared to other isogenic mutants lacking virulence genes known to be disproportionately associated with classical skin strains. FbaA and PAM (i.e., M53 protein) have additive effects in promoting GAS survival in whole blood. The pilus adhesin tip protein Cpa promotes Alab49 survival in whole blood, and appears to fully account for the antiphagocytic effect attributable to pili. That numerous skin strain-associated virulence factors make slight but significant contributions to virulence underscores the incremental contributions to fitness of individual surface protein genes and the multifactorial nature of GAS-host interactions

    Monitoring the Large Proper Motions of Radio Sources in the Orion BN/KL Region

    Full text link
    We present absolute astrometry of four radio sources in the Becklin-Neugebauer/Kleinman-Low (BN/KL) region, derived from archival data (taken in 1991, 1995, and 2000) as well as from new observations (taken in 2006). All data consist of 3.6 cm continuum emission and were taken with the Very Large Array in its highest angular resolution A configuration. We confirm the large proper motions of the BN object, the radio source I (GMR I) and the radio counterpart of the infrared source n (Orion-n), with values from 15 to 26 km/s. The three sources are receding from a point between them from where they seem to have been ejected about 500 years ago, probably via the disintegration of a multiple stellar system. We present simulations of very compact stellar groups that provide a plausible dynamical scenario for the observations. The radio source Orion-n appeared as a double in the first three epochs, but as single in 2006. We discuss this morphological change. The fourth source in the region, GMR D, shows no statistically significant proper motions. We also present new, accurate relative astrometry between BN and radio source I that restrict possible dynamical scenarios for the region. During the 2006 observations, the radio source GMR A, located about 1' to the NW of the BN/KL region, exhibited an increase in its flux density of a factor of ~3.5 over a timescale of one hour. This rapid variability at cm wavelengths is similar to that previously found during a flare at millimeter wavelengths that took place in 2003.Comment: Accepted for publication in Ap

    Stability of Magnetized Disks and Implications for Planet Formation

    Full text link
    This paper considers gravitational perturbations in geometrically thin disks with rotation curves dominated by a central object, but with substantial contributions from magnetic pressure and tension. The treatment is general, but the application is to the circumstellar disks that arise during the gravitational collapse phase of star formation. We find the dispersion relation for spiral density waves in these generalized disks and derive the stability criterion for axisymmetric (m=0)(m=0) disturbances (the analog of the Toomre parameter QTQ_T) for any radial distribution of the mass-to-flux ratio λ\lambda. The magnetic effects work in two opposing directions: on one hand, magnetic tension and pressure stabilize the disk against gravitational collapse and fragmentation; on the other hand, they also lower the rotation rate making the disk more unstable. For disks around young stars the first effect generally dominates, so that magnetic fields allow disks to be stable for higher surface densities and larger total masses. These results indicate that magnetic fields act to suppress the formation of giant planets through gravitational instability. Finally, even if gravitational instability can form a secondary body, it must lose an enormous amount of magnetic flux in order to become a planet; this latter requirement represents an additional constraint for planet formation via gravitational instability and places a lower limit on the electrical resistivity.Comment: accepted in Ap

    Migration of Extrasolar Planets: Effects from X-Wind Accretion Disks

    Full text link
    Magnetic fields are dragged in from the interstellar medium during the gravitational collapse that forms star/disk systems. Consideration of mean field magnetohydrodynamics (MHD) in these disks shows that magnetic effects produce subkeplerian rotation curves and truncate the inner disk. This letter explores the ramifications of these predicted disk properties for the migration of extrasolar planets. Subkeplerian flow in gaseous disks drives a new migration mechanism for embedded planets and modifies the gap opening processes for larger planets. This subkeplerian migration mechanism dominates over Type I migration for sufficiently small planets (m_P < 1 M_\earth) and/or close orbits (r < 1 AU). Although the inclusion of subkeplerian torques shortens the total migration time by only a moderate amount, the mass accreted by migrating planetary cores is significantly reduced. Truncation of the inner disk edge (for typical system parameters) naturally explains final planetary orbits with periods P=4 days. Planets with shorter periods P=2 days can be explained by migration during FU-Ori outbursts, when the mass accretion rate is high and the disk edge moves inward. Finally, the midplane density is greatly increased at the inner truncation point of the disk (the X-point); this enhancement, in conjunction with continuing flow of gas and solids through the region, supports the in situ formation of giant planets.Comment: 15 pages, 2 figures, accepted to ApJ Letter

    An Expanding HI Photodissociated Region Associated with the Compact HII Region G213.880-11.837 in the GGD 14 Complex

    Full text link
    We present high angular and spectral resolution HI 21~cm line observations toward the cometary-shaped compact HII region G213.880-11.837 in the GGD~14 complex.The kinematics and morphology of the photodissociated region, traced by the HI line emission, reveal that the neutral gas is part of an expanding flow. The kinematics of the HI gas along the major axis of G213.880-11.837 shows that the emission is very extended toward the SE direction, reaching LSR radial velocities in the tail of about 14 km/s. The ambient LSR radial velocity of the molecular gas is 11.5 km/s, which suggests a champagne flow of the HI gas. This is the second (after G111.61+0.37) cometary HII/HI region known.Comment: Accepted for publication in the Astronomical Journal (10 pages, 4 figures, 1 table
    corecore