9 research outputs found

    Chronic dexamethasone exposure retards growth without altering the digestive tract microbiota composition in goats

    No full text
    Abstract Background Dexamethasone (Dex), an artificially synthetic cortisol substitute, is commonly used as an anti-inflammatory drug, and is also employed to mimic the stress state experimentally. It is well known that chronic stress disturbs the gut microbiota community and digestive functions. However, no relevant studies have been conducted in ruminants. Results In this study, a low dosage of Dex (0.2 mg/kg body weight, Dex group, n = 5) was consecutively injected intramuscularly for 21 days to simulate chronic stress in growing goats. Goats were injected with saline (0.2 mg/kg body weight) as the control group (Con, n = 5). Dex-treated goats showed a higher number of white blood cells and blood glucose levels (p  0.05); however, ruminal VFA concentrations decreased dramatically 2, 4, 6, and 8 h after the morning feeding on day 21 of the Dex injections. In this study, chronic Dex exposure did not alter the community structure of microbes or methanogenes in the rumen, caecum, or colonic digesta. Only Prevotella increased on days 7 and 14 of Dex treatment, but decreased on day 21, and Methanosphaera was the only genus of methanogene that decreased. Conclusions Our results suggest that chronic Dex exposure retards growth by decreasing DMI, which may be mediated by higher levels of blood glucose and lower ruminal VFA production. Microbiota in the digestive tract was highly resistant to chronic Dex exposure

    Effects of chronic dexamethasone administration on hyperglycemia and insulin release in goats

    No full text
    Abstract Background Dexamethasone (Dex), a synthetic glucocorticoid, is among the most commonly used drugs worldwide in animals and humans as an anti-inflammatory and immunosuppressive agent. GC has profound effects on plasma glucose level and other metabolic conditions. However, the effect of prolonged use of Dex on glucose metabolism in ruminants is still unclear. Results Ten goats were randomly assigned to two groups: the control goats were injected with saline, and the Dex-treated goats were intramuscularly injected daily for 21 d with 0.2 mg/kg Dex. The results showed that plasma glucose and insulin concentrations were significantly increased after Dex administration (P  0.05). The expression of several key genes, involved in blood glucose regulation, was detected by real-time PCR in the small intestine, skeletal muscle and liver. The expression of glucose transporter type 2 (GLUT2), sodium-glucose transporter 1 (SGLT1) and sodium-potassium ATPase (Na-K/ATPase) in the small intestine were generally increased by Dex, and GLUT2 mRNA expression was significantly up-regulated (P < 0.05). In liver, the expression of genes involved in gluconeogenesis including glucose-6-phosphatase catalytic subunit (G6PC), cytosolic form of phosphoenolpyruvate carboxykinase (PCK1) and pyruvate carboxylase (PC), were significantly down-regulated by Dex. However, the protein expression levels of PCK1 & PCK2 were significantly increased by Dex, suggesting a post-transcriptional regulation. In dorsal longissimus, the mRNA expression of genes associated with gluconeogenesis and the insulin signaling pathway were generally up-regulated by Dex, but the mRNA expression of two markers of muscle atrophy, namely F-box protein 32 (FBXO32/Atrogin1) and muscle RING-finger protein 1 (MuRF1), was not altered by Dex. Conclusions Taken together, these results indicate that chronic administration of a low dosage of Dex induces hyperglycemia mainly through gluconeogenesis activation in the goat liver

    The Genetic Architecture of Depression in Individuals of East Asian Ancestry

    No full text
    corecore