3,454 research outputs found

    Time-based measurement of personal mite allergen bioaerosol exposure over 24 hour periods

    Full text link
    © 2016 Tovey et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Allergic diseases such as asthma and rhinitis are common in many countries. Globally the most common allergen associated with symptoms is produced by house dust mites. Although the bed has often been cited as the main site of exposure to mite allergens, surprisingly this has not yet been directly established by measurement due to a lack of suitable methods. Here we report on the development of novel methods to determine the pattern of personal exposure to mite allergen bioaerosols over 24-hour periods and applied this in a small field study using 10 normal adults. Air was sampled using a miniature time-based air-sampler of in-house design located close to the breathing zone of the participants, colocated with a miniature time-lapse camera. Airborne particles, drawn into the sampler at 2L/min via a narrow slot, were impacted onto the peripheral surface of a disk mounted on the hour-hand of either a 12 or 24 hour clock motor. The impaction surface was either an electret cloth, or an adhesive film; both novel for these purposes. Following a review of the time-lapse images, disks were post-hoc cut into subsamples corresponding to eight predetermined categories of indoor or outdoor location, extracted and analysed for mite allergen Der p 1 by an amplified ELISA. Allergen was detected in 57.2% of the total of 353 subsamples collected during 20 days of sampling. Exposure patterns varied over time. Higher concentrations of airborne mite allergen were typically measured in samples collected from domestic locations in the day and evening. Indoor domestic Der p 1 exposures accounted for 59.5% of total exposure, whereas total in-bed-asleep exposure, which varied 80 fold between individuals, accounted overall for 9.85% of total exposure, suggesting beds are not often the main site of exposure. This study establishes the feasibility of novel methods for determining the time-geography of personal exposure to many bioaerosols and identifies new areas for future technical development and clinical applications

    Option Pricing Kernels and the ICAPM

    Get PDF
    We estimate the parameters of pricing kernels that depend on both aggregate wealth and state variables that describe the investment opportunity set, using FTSE 100 and S&P 500 index option returns as the returns to be priced. The coefficients of the state variables are highly significant and remarkably consistent across specifications of the pricing kernel, and across the two markets. The results provide further evidence that, consistent with Merton's (1973) Intertemporal Capital Asset Pricing Model, state variables in addition to market risk are priced

    Water as a potential molecular probe for functional groups on carbon surfaces

    Get PDF
    A new and simple method, using water as a potential molecular probe, is proposed for the determination of the concentration of surface oxygen groups on carbon adsorbents. The procedure is based on a determination of the Henry constant between a water molecule and a functional group from the volume integration of the Boltzmann factor over the accessible space around the functional group. Three porous carbons are used in this study to test the new method: A-5, RF-100 and RF-200. The results obtained are in good agreement with those measured by Boehm titration. This new method can be applied to adsorbents containing small concentrations of oxygen groups where the Boehm titration method may give unreliable results

    Spatiotemporal Evolution of Runaway Electron Momentum Distributions in Tokamaks

    Get PDF
    Novel spatial, temporal, and energetically resolved measurements of bremsstrahlung hard-x-ray (HXR) emission from runaway electron (RE) populations in tokamaks reveal nonmonotonic RE distribution functions whose properties depend on the interplay of electric field acceleration with collisional and synchrotron damping. Measurements are consistent with theoretical predictions of momentum-space attractors that accumulate runaway electrons. RE distribution functions are measured to shift to a higher energy when the synchrotron force is reduced by decreasing the toroidal magnetic field strength. Increasing the collisional damping by increasing the electron density (at a fixed magnetic and electric field) reduces the energy of the nonmonotonic feature and reduces the HXR growth rate at all energies. Higher-energy HXR growth rates extrapolate to zero at the expected threshold electric field for RE sustainment, while low-energy REs are anomalously lost. The compilation of HXR emission from different sight lines into the plasma yields energy and pitch-angle-resolved RE distributions and demonstrates increasing pitch-angle and radial gradients with energy.United States. Department of Energy (DE-FC02-04ER54698)United States. Department of Energy (DE-FG02-07ER54917)United States. Department of Energy (DE-AC05-00OR22725)United States. Department of Energy (DE-FC02-99ER54512)United States. Department of Energy (DE-SC0016268

    The effect of parathyroid hormone on the uptake and retention of 25-hydroxyvitamin D in skeletal muscle cells

    Get PDF
    © 2017 Elsevier Ltd Data from our studies, and those of others, support the proposal that there is a role for skeletal muscle in the maintenance of vitamin D status. We demonstrated that skeletal muscle is able to internalise extracellular vitamin D binding protein, which then binds to actin in the cytoplasm, to provide high affinity binding sites which accumulate 25-hydroxyvitamin D3 (25(OH)D3) [1]. This study investigated the concentration- and time-dependent effects of parathyroid hormone (PTH) on the capacity of muscle cells to take up and release 3H-25(OH)D3. Uptake and retention studies for 3H-25(OH)D3 were carried out with C2C12 cells differentiated into myotubes and with primary mouse muscle fibers as described [1]. The presence of PTH receptors on mouse muscle fibers was demonstrated by immunohistochemistry and PTH receptors were detected in differentiated myotubes, but not myoblasts, and on muscle fibers by Western blot. Addition of low concentrations of vitamin D binding protein to the incubation media did not alter uptake of 25(OH)D3. Pre-incubation of C2 myotubes or primary mouse muscle fibers with PTH (0.1 to 100 pM) for 3 h resulted in a concentration-dependent decrease in 25(OH)D3 uptake after 4 or 16 h. These effects were significant at 0.1 or 1 pM PTH (p \u3c 0.001) and plateaued at 10 pM, with 25(OH)D3 uptake reduced by over 60% (p \u3c 0.001) in both cell types. In C2 myotubes, retention of 25(OH)D3 was decreased after addition of PTH (0.1 to 100 pM) in a concentration-dependent manner by up to 80% (p \u3c 0.001) compared to non-PTH treated-C2 myotubes. These data show that muscle uptake and retention of 25(OH)D3 are modulated by PTH, a physiological regulator of mineral homeostasis, but the cell culture model may not be a comprehensive reflection of vitamin D homeostatic mechanisms in whole animals

    Timeliness of Clinic Attendance is a good predictor of Virological Response and Resistance to Antiretroviral drugs in HIV-infected patients

    Get PDF
    Ensuring long-term adherence to therapy is essential for the success of HIV treatment. As access to viral load monitoring and genotyping is poor in resource-limited settings, a simple tool to monitor adherence is needed. We assessed the relationship between an indicator based on timeliness of clinic attendance and virological response and HIV drug resistance

    A hypothetico-deductive approach to assessing the social function of chemical signalling in a non-territorial solitary carnivore

    Get PDF
    The function of chemical signalling in non-territorial solitary carnivores is still relatively unclear. Studies on territorial solitary and social carnivores have highlighted odour capability and utility, however the social function of chemical signalling in wild carnivore populations operating dominance hierarchy social systems has received little attention. We monitored scent marking and investigatory behaviour of wild brown bears Ursus arctos, to test multiple hypotheses relating to the social function of chemical signalling. Camera traps were stationed facing bear ‘marking trees’ to document behaviour by different age sex classes in different seasons. We found evidence to support the hypothesis that adult males utilise chemical signalling to communicate dominance to other males throughout the non-denning period. Adult females did not appear to utilise marking trees to advertise oestrous state during the breeding season. The function of marking by subadult bears is somewhat unclear, but may be related to the behaviour of adult males. Subadults investigated trees more often than they scent marked during the breeding season, which could be a result of an increased risk from adult males. Females with young showed an increase in marking and investigation of trees outside of the breeding season. We propose the hypothesis that females engage their dependent young with marking trees from a young age, at a relatively ‘safe’ time of year. Memory, experience, and learning at a young age, may all contribute towards odour capabilities in adult bears

    A new molecular model for water adsorption on graphitized carbon black

    Get PDF
    Adsorption of water on graphitized carbon black at various temperatures has been studied with a new molecular model of graphitized carbon black using Monte Carlo simulation. The model is a collection of graphene layers, modelled by the Steele potential, and a number of phenol groups forming clusters of various sizes which are placed randomly at the graphene edge sites to give an O/C ratio of 0.006. The results are compared with experimental data reported by Kiselev et al. [1] in 1968 for a range of temperatures, and for the first time a reconciliation between the experimental data and simulation has been successfully achieved. The simulation results show that water adsorbs preferentially around the functional groups to form clusters, which then grow and merge at the edges of the graphene layers, rather than adsorbing onto the basal planes of the graphene because the electrostatic interactions (hydrogen bonding) between water molecules are stronger than the basal plane-water dispersion interactions
    • …
    corecore