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Abstract

We estimate the parameters of pricing kernels that depend on both
aggregate wealth and state variables that describe the investment op-
portunity set, using FTSE 100 and S&P 500 index option returns as
the returns to be priced. The coefficients of the state variables are
highly significant and remarkably consistent across specifications of
the pricing kernel, and across the two markets. The results provide
further evidence that, consistent with Merton’s (1973) Intertemporal
Capital Asset Pricing Model, state variables in addition to market risk
are priced.



1 Introduction

The failure of simple complete markets option pricing models of the Black-
Scholes (1973) type points to the importance in option pricing of state vari-
ables other than the underlying asset price. Despite increasing evidence that
state variables other than the market index are important for pricing both
equity and equity index option returns, and despite the fact that these se-
curities are traded in integrated capital markets, the role of state variables
that have been found useful in pricing equities has yet to be examined in
option pricing.1

This paper bridges the gap by investigating the role in option pricing of
state variables that have been found important in pricing equities. Because
there is considerable debate among researchers over the state variables that
enter into the pricing kernel, we start with the simple ICAPM pricing kernel
developed by Brennan, Wang, and Xia (2004) (BWX) that prices bonds and
stocks. In this parsimonious setting, time variation in the instantaneous
investment opportunity set is fully described by the dynamics of the real
interest rate r, and the maximum Sharpe ratio η, and their current values
are sufficient statistics for all future investment opportunities. As a result,
these are the only state variables that are priced. BWX show that this simple
ICAPM outperforms the Fama-French (1995) three-factor model in pricing
size and book-to-market sorted portfolios of common stocks, and that both
r and η risks are associated with significant risk premia. Therefore, the real
interest rate and the maximum Sharpe ratio are natural variables to include
in the option pricing kernel, in addition to aggregate wealth.

In the option pricing literature, there is growing evidence that volatility
is a priced factor in option returns. Bakshi and Kapadia (2003) examine
the time series and cross sectional properties of the returns on delta hedged
portfolios with a long position in options and a short position in stocks . The
portfolio returns are significantly negative, implying a negative premium for
volatility risk. Similarly, Buraschi and Jackwerth (1999), Chernov et. al.
(2003), Coval and Shumway (2001), Driessen and Maenhout (2003), and
Pan (2002) have all found that volatility is priced. In particular, Coval and
Shumway (2001) conclude that “something besides market risk is important
for pricing the risks associated with option contracts,” and suggest that
stochastic volatility may be an important factor for asset pricing.

1Vanden (2004) constructs an asset pricing model with wealth constraints, in which

option returns enter the pricing kernel for stocks.
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More generally, Mayfield (2004) has constructed an equilibrium regime switch-
ing model in which volatility is priced. Volatility is found to be associated
(negatively) with the favorableness of investment opportunities, as measured
by the Sharpe ratio. More recently, Tauchen (2005) examines the relation-
ship between market volatility and returns in the context of a general equi-
librium framework. He generates a two-factor structure for volatility, along
with time-varying risk premiums on consumption and volatility risk. In light
of this theoretical and empirical evidence on the role of volatility, we include
a measure of volatility as an additional state variable in the pricing kernel.

Most prior studies that extract a pricing kernel from the observed prices of
index options rely on a parameterization of the stochastic process for the
underlying index. For example, Rosenberg and Engel (2002) assume that
the index follows a GARCH process, and Pan (2002) and Santa-Clara and
Yan (2004) assume that it follows a mixed jump-diffusion process. While
a parametric assumption of the underlying asset dynamics lends power to
the estimation, it also raises the possibility of mis-specification. In this
paper, we estimate the pricing kernel by applying the Generalized Method
of Moment (GMM) to option returns, which avoids the need to rely on any
specific option pricing model or specific assumptions about the stochastic
processes for the underlying asset returns. Both Buraschi and Jackwerth
(1999) and Coval and Shumway (2001) have previously applied GMM to
option returns.

We estimate separate pricing kernels for the UK and US.2 Our primary
options data are monthly returns on 11 put and call option portfolios on the
FTSE 100 index for the period from April 1992 to March 2002, and 10 put
and call portfolios on the S&P 500 index for the period from January 1992
to April 2002. The portfolios consist of options that have between 1 and 2
months to maturity and between 2 and 3 months to maturity at the time
of portfolio formation, and are formed on the basis of option type, time to
maturity, and moneyness.

The empirical proxies that we use for the arguments of the pricing kernel are
as follows. The return on aggregate wealth is taken as the return on a broad
index of market returns: FTSE 250 value-weighted index for the UK and the
CRSP value-weighted index for the US. The time series of the real interest
rate r, and maximum Sharpe ratio η, together with the expected rate of
inflation π, are estimated by Brennan and Xia (2006) (BX) from panel data

2Brennan and Xia (2006) discuss the theoretical relation between the pricing kernels

for different currencies and present empirical evidence for several pairs of currency.
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on zero-coupon government bond yields within an essentially affine pricing
model framework. The proxy for our final state variable, volatility, is a
measure of the volatility implied by option prices.

When the pricing kernel is constrained to be a power function of the return
on aggregate wealth, the estimated coefficient of relative risk aversion for the
UK (FTSE 100 options) is found to be negative. However, the estimated
coefficient of relative risk aversion becomes positive (but not statistically
significant) when the pricing kernel specification is augmented by the state
variables r, η, and σ. For the US (S&P 500 options), the estimated coef-
ficient of relative risk aversion is 2.7 when no state variables is included,
and 4.8 when all the state variables are included. Only the coefficient of
the innovation in the real interest rate is significant in the UK, while the
coefficients of all three state variables are significant in the US. The signs of
the coefficients on the state variables are the same for the US and UK.

It is possible that the significance of the state variables is induced by the
restrictive functional form of the kernel on the return on aggregate wealth.
Therefore the kernel is next written as the product of a polynomial in the
return on aggregate wealth and an exponential affine function of the state
variables. When r and η are the only state variables, the coefficients of both
variables are significant for both US and UK;3 moreover, the signs of the
coefficients are the same for the two countries, and are consistent with the
estimates of the risk premia for these variables obtained by BWX (2004,
Table II) using returns on size and book-to-market sorted portfolios of US
common stocks. They are also consistent with the correlations between these
variables and the pricing kernels that are estimated using the government
bond yield data by BX.

When an estimate of the implied volatility, σ, is added to the pricing kernel
specification, its coefficient is significant and positive for both countries: the
sign of the coefficient is consistent with prior studies by Coval and Shumway
(2001) and Bakshi and Kapadia (2003) that report a negative volatility
risk premium. Introducing the implied volatility makes the coefficient of η

insignificant for the UK but makes no material difference for the US.

While the coefficients of the state variables in the pricing kernel are not
restricted by theory, we find striking consistency between: first, the signs
of the coefficients of the state variables in the pricing kernel for the two
countries estimated using the option returns in this paper; second, the signs

3The finding of a significant risk premium associated with r contrasts with Pan (2002),

who explicitly assumes that interest rate risk is not priced.
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of the correlations of the state variables with the pricing kernel estimated
using the bond yield data by BX; and third, the risk premia for the state
variables estimated using US equity returns by BWX. 4

The over-identifying restrictions of the estimation are rejected, which may in
part due to our small sample. But the general consistency in the estimated
coefficients of the pricing kernel, not only across markets and countries,
but also across different model specifications, attests to the importance of
including these state variables that capture time-variation in the investment
opportunity set in the pricing kernel for risky securities.

The rest of the paper is organized as follows. Section 2 discusses option
pricing in terms of the pricing kernel. Section 3 describes the data. The main
empirical results are presented in Section 4. Finally, Section 5 concludes.

2 Option Prices and the Pricing Kernel

It is well known that the assumption of no arbitrage is equivalent to the
existence of a pricing kernel, m, such that for any security return, R̃t+1:5

E
[
mt+1(1 + R̃t+1))|It

]
= 1 (1)

where R̃t+1 is the rate of return from t to t+1, and It denotes the information
available at time t. In general, the pricing kernel is a function of a vector of
state variables X.

When pricing contingent claims on an underlying asset S, it is often conve-
nient to project the pricing kernel m onto the space of the underlying asset
returns. Cochrane (2001) shows that the projected pricing kernel, m∗, has
the same pricing implications for payoffs as does the original pricing ker-
nel. In a Black-Scholes economy in which the (continuously compounded)
interest rate r is a constant, and the price of the underlying asset S fol-
lows a geometric Brownian Motion, the (projected) pricing kernel for all
contingent claims can be written as the product of a power function of the
underlying asset return and a function of time t as shown in Bick (1987):
m∗ = (1 + R̃)−γe−r. Rubinstein (1976) and Brennan (1979) show that a
stochastic discount factor of this form yields Black-Scholes pricing in a dis-
crete time setting if security returns are lognormal. If the Black-Scholes

4This form of pricing kernel has not been estimated using UK equity returns.
5Campbell et al. (1997) and Cochrane (2001) discuss the role of the pricing kernel in

asset pricing.
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assumptions are not satisfied, a projection of the true pricing kernel onto
the asset return space is still feasible, but the projection may take a general
and unknown functional form.

In studying the prices of options on a market index, it is common to estimate
only the projection of the pricing kernel onto the space of the underlying
index returns. For example, Ait-Sahalia and Lo (2000), Jackwerth (2000),
and Rosenberg and Engle (2002) use equity index option prices to estimate
the projections of pricing kernels onto S&P 500 returns. Since the pricing
kernel projection is a univariate function of the index returns, it does not
allow for an explicit examination of other state variables that may enter the
pricing kernel.

In this paper, we estimate a pricing kernel which is motivated by the In-
tertemporal Capital Asset Pricing Model of Merton (1973) and contains
variables that capture the time variation in investment opportunities. BWX
and Nielsen and Vassalou (2005) argued that, in a diffusion setting, if the in-
terest rate r and the maximal Sharpe ratio η follow a joint Markov process,
then they are sufficient statistics for investment opportunities, and there-
fore, along with the wealth of the representative agent, natural candidates
as arguments of the pricing kernel in an ICAPM setting. BWX report that
both state variables command significant risk premia and play important
roles in the pricing of cross-sectional size and book-to-market sorted equity
portfolio returns. Note that, if the state variables, X ≡ (r, η), are not inde-
pendent of the aggregate wealth, there is no reason to expect the projection
of the pricing kernel onto the aggregate wealth to retain the power function
form even if the representative agent’s utility of consumption is iso-elastic.

Motivated by the BWX model, we shall first assume that the stochastic
discount factor can be written as the product of a power function of the ag-
gregate wealth return RW , and an exponential affine function of the change
in state variables r and η:

mt+1 = g(RW,t+1) expc1∆rt+1+c2∆ηt+1 (2)

g(RW,t+1) is a monotone decreasing function, reflecting the declining mar-
ginal utility of wealth. In our empirical analysis we shall consider a standard
power specification, g(RW,t+1) = c0(1 + RW,t+1)−γ where c0 > 0, and γ,
the coefficient of relative risk aversion, is greater than zero. We shall also
consider a more general specification in which g(RW,t+1) is a Chebyshev
polynomial in the return on aggregate wealth. The exponential function
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ensures that the pricing kernel cannot be negative. We shall later consider
additional potential state variables within this exponential affine framework.

The definition of mt+1 together with equation (1) implies that, for any
security i, the following moment condition holds:

E
[
g(RW,t+1) expc1∆rt+1+c2∆ηt+1(1 + R̃i,t+1)|It

]
= 1. (3)

If zt is an instrumental variable in the current information set It, then the
above Euler equation implies the unconditional moment condition:

E
[
g(RW,t+1) expc1∆rt+1+c2∆ηt+1(1 + R̃i,t+1)zt

]
= E (zt) , ∀zt ∈ It. (4)

We shall estimate the parameters of the pricing kernel, including c1 and c2,
by GMM using moment conditions (3)-(4), where the set of asset returns,
Ri, consists of returns on index option portfolios, the returns on aggregate
wealth, and Treasury Bill rates.

The BWX model assumes that both the real interest rate and the Sharpe
ratio follow univariate Ornstein-Uhlenbeck processes. This is obviously a
strong assumption, and Brandt and Kang (2004) present evidence which
suggests that the Sharpe ratio (of the equity market) follows a two-factor
process with the second factor being the market volatility σ. Under this
specification of the dynamics of the Sharpe ratio, the level of market volatil-
ity, σ, also becomes a state variable that is required to fully describe the
investment opportunity set.6 Therefore, we shall include σ in the set of
state variables, X, which describe the pricing kernel. However, for analyti-
cal tractability we shall treat σ as constant when we estimate the time series
of the other two state variables, r and η, from panel data on Treasury Bond
yields.

3 Data

The primary data are the prices of European put and call options on the
FTSE 100 index traded on the London International Financial Futures and

6Note that σ is not necessary to describe the instantaneous myopic investment oppor-

tunity set, which is fully captured by (r, η). However, it may be necessary to capture the

dynamics of the myopic investment opportunity set.
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Options Exchange (LIFFE), and the prices of European put and call options
on the S&P 500 index traded on the Chicago Board Options Exchange
(CBOE). We collect prices on the second (or the closest to the second)
trading day of each month from April 1992 to March 2002 for the UK and
from January 1992 to April 2002 for the US7, on options that have maturities
of less than three months. For each option that has a price on the second
trading day of the current month and on the second trading day of the
following month, a return for the month is calculated as the proportional
price change between these dates. Put and call options are assigned to
portfolios on the basis of their time to maturity and moneyness. The ‘1-
month’ portfolios contain options that have between 1 and 2 months to
expiration at the portfolio formation date at the beginning of the month, and
the ‘2-month’ portfolios contain options that have between 2 and 3 months
to expiration at the portfolio formation date. For each maturity, 7 portfolios
of calls and of puts are formed according to moneyness. Portfolio 1 consists
of deep out-of-the-money options, whose moneyness is no greater than -
15%; for portfolio 2, the moneyness is between -15% and -10%; portfolio 3
between -10% and -5%; portfolio 4 between -5% and 0; portfolio 5 between
0 to 5% in-the-money; portfolio 6 between 5% and 10%; and for portfolio 7,
it is greater than 10% in-the-money. Summary statistics on the portfolios
are presented in Table 1.

The deep out-of-the-money call portfolios (low numbered portfolios) have
negative average returns; the average return on 1-month calls that are be-
tween 5 and 10% out of the money is minus 29% per month for the UK and
minus 3% per month for the US, which contrasts with a return of 1.48%
per week reported by Coval and Shumway (2001) for similar (American)
contracts on the SPX index for the period 1990-1995; the corresponding fig-
ures for 2-month calls are minus 15% per month and minus 7% per month.
The returns to the deep out-of-the-money call portfolios are highly skewed.
The in-the-money call portfolios have slightly positive average returns and
virtually no skewness. The same convention was followed in constructing
the portfolios of puts so that portfolio 1 contains the deep out of the money
options, and portfolio 7 the deep in the money options. As with the calls,
the deep out of the money puts have strongly negative returns: the portfo-
lio of 1-month puts that is between 10 and 15% out of the money loses an
average of 29% per month for the UK and 64% per month for the US.

Not all of the moneyness buckets contain traded options each month. For
7We thank Jens Jackwerth for kindly providing us the US option data from 1992 to

1995. The data from 1996 to 2002 are collected from OptionMetrics.
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example, there are 98 out of 120 months for the UK when there is no 1-month
call option that is more than 15% out of the money. Our main analysis
will be conducted using the portfolios for which there are essentially no
missing observations. For the UK we use 11 portfolios that have no missing
observations, which include two 1-month call portfolios, two 1-month put
portfolios, three 2-month call portfolios, and four 2-month put portfolios.
For the US we use 10 portfolios that have no more than 2 (out of 123)
missing observations, which include three 1-month call portfolios, three 1-
month put portfolios, two 2-month call portfolios, and two 2-month put
portfolios.

We shall use as our measure of market volatility, σ, an estimate of the implied
volatility of option prices. For the UK this is obtained by first calculating
the average implied volatility for each of the one month option portfolios
and then averaging these values. For the US the implied volatility is taken
as the VIX index.8 The nominal interest rate, Rf , for the UK is the 1-month
Treasury Bill rate reported by the Bank of England, and for the US is the
30-day Treasury Bill rates obtained from CRSP. The return on aggregate
wealth for the UK is taken as the return on the FTSE 250 index, which is a
value-weighted index of UK equities. Note that this is a broader index than
the FTSE 100 on which the options are written. We choose the FTSE 250
as the market index because it is a better proxy for the return on aggregate
wealth. For the US the return on aggregate wealth is taken as the CRSP
value-weighted index return.

Following BWX, the empirical estimates of the state variables (r, η, π) come
from BX. For the UK, they are derived from the zero coupon bond yields for
the second trading day of each month from January 1985 to May 2002 for
maturities of 1, 2, 3, 5, 7, 10 and 15 years reported by the Bank of England.
For the US, they are estimated from zero coupon bond prices of US Treasury
Bonds using a cubic spline.9. Inflation rates were calculated from Consumer
Price Index data reported by DataStream.

8VIX is the CBOE volatility index and measures market expectations of volatility

over the next 30 days as conveyed by stock index option prices. VIX estimates expected

volatility from the prices of S&P 500 index options.
9Further details are available in Brennan and Xia (2006)

8



4 Empirical Results

Table 2 provides summary statistics for the variables that we consider as
arguments of the pricing kernel and as instruments in our estimation. Panel
A tabulates the mean, standard deviation, and skewness of the level and the
innovations of the state variables, the market returns, and the riskfree rate.
Panel B reports the contemporaneous correlations between the innovations
of the state variables and the market return. Panel C, which comes from
Table 3 in Brennan and Xia (2006), reports correlations between the state
variables themselves and between the state variables and the equity market
pricing kernel. Note that in both the US and the UK, the correlation be-
tween r and the pricing kernel is positive and significant, and the correlation
between η and the pricing kernel is negative and significant.10

Some of the correlations between the changes in the state variables and
the return on aggregate wealth are quite significant. A regression of the
aggregate wealth return on changes in r, π, η, σ yields a value of R2 of
29% for the UK and 27.5% for the US. Therefore, even if g(RW ) is a power
function, if the true pricing kernel is of the form (2), it is unlikely that the
projection of the kernel onto the space of aggregate wealth returns will yield
a simple iso-elastic function. This may account for the non-monotonicity
(absence of local risk aversion) as well as the time variation in the pricing
kernel projections estimated by Rosenberg and Engle (2002) and Jackwerth
(2000), among others. We shall examine this issue later.

In order to identify the coefficients of the pricing kernel it is necessary that
the loadings of the option portfolio returns on the pricing kernel variables
not be zero. Table 3 reports the results of seemingly unrelated regressions
of the monthly returns on the option portfolios on the market return and
changes r, η, and σ. Panel A reports the coefficients for the 1-month option
portfolio returns for the two markets, and Panel B for the 2-month option
portfolios. The loadings of the portfolio returns vary considerably with both
moneyness and maturity. For the UK a likelihood test easily rejects the null
hypotheses that the coefficients are equal to zero for each of ∆r, ∆η and
∆σ separately. For the US, when we use all the option returns, we can
reject the null hypothesis only for the coefficient of ∆σ . We conjecture that
the prices of options that have more than 1 month to maturity are more
sensitive to the state variables than are the prices of options that have less

10The signs of the correlations ρrm, ρπm, ρηm have been changed from those reported

in Brennan and Xia (2006, Table 6) to reflect the fact that the correlations reported there

are with the negative of the innovation in m.
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than 1 month to maturity and, consistent with this, we find that when we
restrict attention to the 2-month option returns we can reject the null for
all the variables except ∆η.

We use as instruments in our GMM regressions (1, Rf , r, π, η, σ), a constant,
the nominal interest rate, estimates of the instantaneous real interest rate
and expected rate of inflation, the estimate maximum Sharpe ratio and
the implied volatility of option returns. Regressions of the option portfolio
returns on these variables yield R2 of 4-10% in the UK and of 2-7% in the
US, with the implied volatility being the most significant variable in both
countries. A likelihood ratio test easily rejects the null hypothesis that the
instruments jointly lack predictive power for the option portfolio returns.

Table 4 reports GMM estimates of the coefficients of the generalized iso-
elastic pricing kernel.11 These are estimated from the system of (empirical)
moment conditions:

1
T

T∑

t=1

[
c0 (1 + RW,t)

−γ expc1∆rt+c2∆ηt+c3∆σt(1 + Ri,t))− 1
]
zt−1 = 0 (5)

where γ is the coefficient of relative risk aversion, Ri,t is the return on each of
the test assets (portfolios) in month t, and zt−1 is the instrumental variable.
The test assets are the option portfolios, aggregate wealth, and the Treasury
Bill. We report the results using 11 option portfolios for the UK market and
10 portfolios for the US market, as discussed previously. For each sample
we estimate three models. In the first specification, the pricing kernel is
assumed to be an iso-elastic function of the aggregate wealth return only;
this corresponds to the pricing kernel projections of Rosenberg and Engle
(2002), Jackwerth (2000) and others for the S&P 500, and of Liu et. al.
(2006) for the FTSE index. The second model introduces the ICAPM state
variables r and η, and the third model includes, in addition, the implied
volatility of the equity index, σ. The t−ratios reported in the estimations
should be treated with some caution because of the extreme non-normality
of the return data and the limited sample size. In the discussion that follows
we shall take this caution as given.12

11The estimation was carried out in Eviews v5 updating the weighting matrix once.
12Ferson and Foerster (1994) discuss small sample biases in GMM estimates of an asset

pricing model. Lynch and Wachter (2004) introduce GMM-based estimation methods

when the sample data have unequal length. However, their methods do not lend themselves

to our case, where the missing observations occur at random points in each series.
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Consider first the estimates for the UK reported in Panel A. For the first
model of the pricing kernel, which excludes any state variables, the estimate
of γ is negative (around −0.3) and highly significant (t-ratio of 10.5). The
negative estimates of γ is inconsistent with risk aversion if the FTSE 250
index is taken as a proxy for aggregate wealth and if there is no variable
other than the aggregate wealth return in the pricing kernel. In contrast,
the estimate of γ reported in Panel B for the US is positive and significant
at 3.0.

Consider next the effect of introducing the state variables r and η into
the pricing kernel. Now the estimate of γ for the UK is 2.3, although the
estimated t-statistic is not large. The corresponding estimates for the US is
6.0.13

The estimated coefficient of ∆r is highly significant for both the US and the
UK. The sign of the estimated coefficient is positive in both cases, which
is consistent with the signs of the correlations estimated by Brennan and
Xia (2006) from the bond yield data, reported in Table 2 Panel C, and also
with the negative risk premium for interest rate risk found by BWX (2004,
Table 2) for size and book-to-market sorted US stock portfolios. The sign of
the parameter implies that there is a negative risk premium associated with
being long ‘r’ risk, or a positive risk premium for securities such as bonds
whose returns load negatively on the interest rate.

The coefficient of ∆η is negative and highly significant for the US estima-
tions; this is again consistent with the sign of the estimate of ρηm for the
US in Table 2 Panel C, as well as with the BWX findings. However, the
estimated coefficient of ∆η for the UK, while negative and therefore consis-
tent with the sign of ρηm estimated from UK government bond yields, is not
significant.

When implied volatility is added to the pricing kernel, its coefficient is pos-
itive but statistically insignificant, and it does not change our qualitative
remarks about the other coefficients. The positive sign of the coefficient
on ∆σ implies a negative risk premium associated with a long position in
volatility, which is consistent with the findings of Bakshi and Kapadia (2003)

13Mayfield (2004) reports estimates of the coefficient of relative risk aversion for the

US of around unity in a model with changing volatility. The coefficient of risk aversion

estimated in Coval and Shumway (2001) ranges from -6.68 to 6.0 depending on which

US S&P 500 option straddle is used in the estimation. Both Aı̈t-Sahalia and Lo (2000)

and Rosenberg and Engle (2002) use the US S&P 500 index options to estimate empirical

pricing kernels and the estimated risk aversion coefficient has an average value of 12.7 in

Aı̈t-Sahalia and Lo (2000) and of 7.36 in Rosenberg and Engle (2002).
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and Coval and Shumway (2001), who find that returns on market neutral
straddles and other positions that are long volatility are negative.

In summary, we have found that if no state variable is included in the pric-
ing kernel, the estimated iso-elastic kernel for the UK is inconsistent with
risk aversion, but this inconsistency is eliminated with the inclusion of the
state variables. All the US estimates are consistent with risk aversion. We
have found that interest rate risk, ‘η’ risk, and volatility risk are priced
consistently in the two countries. We conclude that if the pricing kernel
is constrained to be of the iso-elastic form in the aggregate wealth return,
then there is strong evidence that there are additional state variables in the
pricing kernel in addition to aggregate wealth. The evidence is strongest for
the interest rate, and is also strong for η in the US. 14

However, it is possible that these variables attain their significant role be-
cause of the constraint that we have imposed on the functional dependence
of the pricing kernel on the aggregate wealth return. Therefore, we shall
examine the effect of allowing more general functional forms for the return
related element of the pricing kernel.

Bansal and Viswanathan (1993) argue that high-dimensional non-linear pric-
ing kernels are necessary to price the non-linear payoffs of derivative assets,
and use a neural network approach to approximate the unknown pricing
kernel. Chapman (1997) and Rosenberg and Engel (2002) use orthogonal
polynomials to approximate a nonlinear pricing kernel. We follow the latter
and allow the wealth dependent element of the pricing kernel to be approx-
imated by a sum of orthogonal polynomials in the aggregate wealth return.
The pricing kernel is then written as the product of a sum of orthogonal
polynomials in the aggregate wealth return and an exponential affine func-
tion of the state variables:

m = ℘n(RW ) expc2∆r+c3∆η+c4∆σ (6)

where

℘n(RW ) = θ0C0 (1 + RW ) +
n∑

k=1

θkCk(1 + RW )

is an n−term generalized Chebyshev polynomial15 expansion in the gross
14The results for separate estimations for the 1- and 2-month option portfolios, and for

the call and put option portfolios are similar to those reported in Table 4 and are available

upon request.
15There are several families of orthogonal polynomials. For example, Chapman (1997)
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return on aggregate wealth, (1 + RW ), and Ck(1 + RW ) stands for the kth

order Chebyshev polynomial. The Chebyshev polynomial is defined over
the domain [-1,1] with terms Ck(x) = cos(k cos−1(x)). In the generalized
Chebyshev polynomial, the gross return 1 + RW , which is defined over the
interval [a, b], is first transformed into x via x = 2(1+RW )−a−b

b−a before Ck(x)
can be calculated. Following Rosenberg and Engle (2002), we set the return
domain for the Chebyshev polynomial to be [0.9, 1.1], and gross returns
below (above) 0.9 (1.1) are set to 0.9 (1.1). We consider approximations
with n = 3, 4 terms of the gross return on aggregate wealth, 1 +RW . While
we do not restrict the pricing kernel to be strictly positive in our estimation,
the estimated pricing kernels all turn out to be positive in the relevant region.

Table 5 reports the estimated coefficients of the state variables for two dif-
ferent specifications of the pricing kernel. Panel I of the table reports the
results when r and η are the only state variables. The coefficient estimates
are fairly insensitive to the degree of the approximating polynomial, and for
the US the coefficients are very close to those reported for the iso-elastic
kernel in Table 4. For both countries the coefficients of ∆r (∆η) are now
positive (negative) and significant, which is consistent with the signs of ρrm

(ρηm) as discussed above. When the implied volatility is introduced into the
kernel in Panel II, its coefficient is positive and significant for both countries,
which is also consistent with the results reported above for the iso-elastic
kernel. However, for the UK the inclusion of implied volatility makes the
coefficient of η insignificant.

We expect the functions g(RW ) to be monotone decreasing. When we esti-
mate the kernel without including any state variables, m = ℘3(RW ), where
℘3(RW ) is a third order Chebychev polynomial, we find, as shown in Figure
1, that the function is generally downward sloping for the US for market
returns less than about 5% in absolute value. The function flattens out
and even decreases for |RW | > 5%, but it is not well identified in this
region. However, for the UK the function takes on the shape of an in-
verted ‘U’ which is clearly inconsistent with risk aversion. When the state
variables are included in the pricing kernel, the wealth related component,
g(RW ) = ℘3(RW ) is monotone decreasing for |RW | > 5%, and becomes close
to monotone decreasing for the UK (it flattens out and is slightly increasing
at the ends). Thus while the introduction of the state variables has only a
modest effect on the function for the US, it has a major effect for the UK (as

uses a four-term Legendre polynomial to approximate the pricing kernel, and Rosenberg

and Engle (2002) estimate the empirical pricing kernel with a three-term generalized

Chebyshev polynomial expansion.
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we found for the iso-elastic specification) and makes the estimated pricing
kernel broadly consistent with risk aversion.

5 Conclusion

In this paper we use returns on portfolios of FTSE 100 and S&P 500 index
options to estimate pricing kernels that depend, not only on the aggregate
wealth return, but also on up to three state variables, the real interest rate,
r, the maximum Sharpe ratio, η, and the implied volatility of option prices,
σ. The first two state variables are derived from the BWX (2004) version
of the ICAPM, as estimated by BX (2006) using data on government bond
yields. The implied volatility is included as a state variable because previous
studies have found evidence that hedged option portfolios that are formed
to have a positive loading on volatility produce negative excess returns, and
because of evidence that it is necessary to include this variable to capture
the dynamics of the maximum Sharpe ratio, η. Preliminary regressions show
that option returns are significant related to innovations to state variables,
and the loadings differ across option type, moneyness, and time to maturity.

We estimate the pricing kernels by GMM using the returns on 11 (10) port-
folios of UK (US) index options formed according to type, moneyness, and
time to expiration. We express the pricing kernel as the product of a func-
tion of the aggregate wealth return and an exponential affine function of
the changes in the state variables. The pricing kernel is first constrained
to depend on a power function of the aggregate wealth return. When no
state variables are included in the kernel, the estimated power is positive
and highly significant for the UK, which is inconsistent with risk aversion.
However, when the innovations of the state variables are included in the
kernel, the estimate of the power becomes negative, although not signifi-
cant. The state variable r appears significantly in the pricing kernel, but
neither the maximum Sharpe ratio η nor the implied volatility σ are signif-
icant. For the US, the estimated coefficient of relative risk aversion is 2.7
when no state variables are included, and 4.8 when r, η, and σ are included.
The coefficients of all three state variables are significant, and their signs
are consistent with previous findings of a negative volatility premium, with
the estimated correlations between the pricing kernel and r and η estimated
from bond yields, and with the risk premia estimated using portfolios of
common stocks by BWX.

It is possible that the significance of the state variables is due to the con-
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strained functional form of the dependence of the kernel on the aggregate
wealth return. Therefore we repeat the estimations by substituting a poly-
nomial expression in the return on wealth for the power function. The
coefficients on the state variables for the US are essentially unaffected by
the change in functional form of the kernel, and the coefficients of ∆r, ∆η,
and ∆σ are consistent and significant across specifications. For the UK, the
coefficients of ∆r and ∆σ are also consistent and significant across specifi-
cations. While the coefficient on ∆η in the US is negative and significant
in all specifications the ∆η coefficient in the UK is not significant in the
presence of ∆σ. Finally, the signs of the coefficients of the state variables in
the pricing kernel are consistent across countries, consistent with the signs
of their correlations with the pricing kernel estimated from bond yields, and
consistent with the BWX risk premium estimates.

The results in the paper provide further evidence that the failure of tra-
ditional asset pricing models is at least in part due to the failure to in-
clude in the pricing kernel non-wealth-related variables that are important
to investors, because they describe future investment opportunities. This
of course is the insight underlying Merton’s (1973) classic analysis. How-
ever, the rejection of the over-identifying restrictions suggests that there
are other variables than those we have considered that are important to
investors. Longstaff (1995) suggests that transaction costs and liquidity ef-
fects are important for the pricing of index options, and Santa-Clara and
Saretto (2005) point to the importance of margin requirements as obstacles
to the achievement of equilibrium in options markets.
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Table 2. Summary Statistics of Pricing Kernel Arguments and Instruments

Panel A reports the mean, standard deviation, and skewness of the risk free rate, the

market return, the level and the innovations of the state variables r, π, η, and σ. Panel B reports

the contemporaneous correlations between the market return and the innovations in r, π, η and

σ. Panel C reports the correlation between innovations of the state variables and the pricing

kernel m, as estimated in Brennan and Xia (2006). All variables are annualized.

Panel A: Mean, Standard Deviation, and Skewness
r ∆r η ∆η σ ∆σ π ∆π Rf RW

1. United Kingdom

Mean 0.034 -0.000 0.728 -0.002 0.217 0.022 0.027 -0.000 0.062 0.125

Stdev 0.024 0.003 0.882 0.069 0.072 0.035 0.023 0.003 0.013 0.148

Skew -0.045 -2.051 0.120 0.416 1.054 0.800 -0.172 0.102 1.313 -0.109

2. United States

Mean 0.023 -0.000 -0.063 -0.001 0.193 0.000 0.028 -0.000 0.052 0.117

Stdev 0.014 0.003 0.338 0.030 0.060 0.036 0.005 0.001 0.005 0.146

Skew 0.397 -0.338 -0.105 0.955 0.699 -0.196 -0.204 0.230 0.280 -0.818
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Table 2 continued

Panel B: Contemporaneous Correlations

1. United Kingdom 2. United States
∆r ∆η ∆σ ∆π RW ∆r ∆η ∆σ ∆π RW

∆r 1.0 ∆r 1.0

∆η -0.08 1.0 ∆η -0.24 1.0

∆σ 0.22 -0.08 1.0 ∆σ -0.05 -0.08 1.0

∆π -0.45 0.18 -0.02 1.0 ∆π 0.23 0.13 -0.04 1.0

RW -0.17 -0.09 -0.44 -0.14 1.0 RW 0.09 -0.16 -0.49 -0.02 1.0

Panel C: Correlations between innovations in state variables and m

1. United Kingdom
ρrπ ρrη ρrm ρπη ρπm ρηm

Estimate -0.104 -0.234 0.714 -0.191 -0.178 -0.833
t-ratio (0.75) (1.14) (3.49) (0.78) (1.93) (4.38)

2. United States
ρrπ ρrη ρrm ρπη ρπm ρηm

Estimate 0.027 -0.413 0.801 -0.199 0.276 -0.919
t-ratio (0.11) (0.54) (6.22) (0.69) (1.66) (2.57)
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Table 4. GMM Estimates of Iso-Elastic Pricing Kernels

The table reports GMM estimates of iso-elastic pricing kernels for monthly returns on
option portfolios, the market index returns, and the Treasury bill rate. The general pricing kernel
equation is of the form:

m = c0(1 + RW )−γec1∆r+c2∆η+c3∆σ

The option portfolios contain options with maturities of between 1 and 2 months, and between 2

and 3 months and with different moneyness. The sample period is 1992.04 to 2002.03 with 1560

observations for Panel A and 1992.01 to 2002.04 with 1473 observations for Panel B.

Panel A. UK FTSE 100 Option Portfolios
co γ c1 c2 c3

1.005 -0.276
(2236) (10.49)
0.910 2.265 189.805 -0.141

(38.36) (1.53) (4.89) (0.28)
0.886 1.171 204.052 -0.065 1.520

(32.71) (0.51) (5.18) (0.13) (0.89)

Panel B. US S&P 500 Option Portfolios
co γ c1 c2 c3

1.064 2.688
(585) (15.73)
0.793 5.994 112.137 -23.734

(11.98) (3.03) (3.29) (4.06)
0.670 4.758 131.648 -29.034 3.342
(9.63) (2.20) (3.38) (4.52) (1.89)
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Table 5. GMM Estimates of Polynomial Pricing Kernels

The table reports GMM estimates of polynomial pricing kernels for monthly returns on
option portfolios, the market index returns, and the Treasury bill rate. The general pricing kernel
equation is of the form:

m = ℘n(RW )ec1∆r+c2∆η+c3∆σ

The option portfolios contain options with maturities of between 1 and 2 months, and between 2

and 3 months and with different moneyness. The sample period is 1992.04 to 2002.03 for Panel

A and 1992.01 to 2002.04 for Panel B.

A. UK option portfolios B. US option portfolios

n c1 c2 c3 c1 c2 c3

I. m = ℘n(RW )ec1∆r+c2∆η

3 251.83 -1.25 75.48 -20.48
(5.91) (2.20) (2.34) (3.72)

4 274.36 -1.55 82.71 -110.25
(6.45) (2.70) (1.97) (9.52)

II. m = ℘n(RW )ec1∆r+c2∆η+c3∆σ

3 395.97 -0.63 6.43 126.26 -41.42 0.06
(8.66) (0.98) (3.30) (2.70) (5.57) (2.57)

4 395.71 -0.69 6.17 173.24 -49.76 0.12
(8.65) (1.05) (2.32) (3.29) (5.70) (3.94)
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Figure 1. Return related element of estimated iso-elastic and polynomial
pricing kernels

The figure plots the market return related component of the pricing kernel. Three
g(RW ) are plotted: (1) g1(RW ) is calculated from 3-term Chebyshev polynomi-
als without any state variables; (2) g2(RW ) is calculated from 3-term Chebyshev
polynomials with all three state variables; (3) g3(RW ) is estimated from iso-elastic
pricing kernel with γ = 1.17 for the UK market and γ = 4.76 for the US market.
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