31 research outputs found

    Biodegradable polymers in dental tissue engineering and regeneration

    No full text

    C<sub>60</sub> and Sc<sub>3</sub>N@C<sub>80</sub>(TMB-PPO) derivatives as constituents of singlet oxygen generating, thiol-ene polymer nanocomposites

    No full text

    Carbon nanotube- and graphene-reinforced multiphase polymeric composites: review on their properties and applications

    No full text

    Search for heavy long-lived multi-charged particles in the full LHC Run 2 pp collision data at s = 13 TeV using the ATLAS detector

    Get PDF
    A search for heavy long-lived multi-charged particles is performed using the ATLAS detector at the LHC. Data collected in 2015–2018 at √s = 13 TeV from pp collisions corresponding to an integrated luminosity of 139 fb−1 are examined. Particles producing anomalously high ionization, consistent with long-lived spin-½ massive particles with electric charges from |q| = 2e to |q| = 7e are searched for. No statistically significant evidence of such particles is observed, and 95% confidence level cross-section upper limits are calculated and interpreted as the lower mass limits for a Drell–Yan plus photon-fusion production mode. The least stringent limit, 1060 GeV, is obtained for |q| = 2e particles, and the most stringent one, 1600 GeV, is for |q| = 6e particles

    Anomaly detection search for new resonances decaying into a Higgs boson and a generic new particle X in hadronic final states using s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search is presented for a heavy resonance Y decaying into a Standard Model Higgs boson H and a new particle X in a fully hadronic final state. The full Large Hadron Collider run 2 dataset of proton-proton collisions at..

    Tools for estimating fake/non-prompt lepton backgrounds with the ATLAS detector at the LHC

    Get PDF
    International audienceMeasurements and searches performed with the ATLAS detector at the CERN LHC often involve signatures with one or more prompt leptons. Such analysesare subject to `fake/non-prompt' lepton backgrounds, where either a hadron or a lepton from a hadron decay or an electron from a photon conversion satisfies the prompt-leptonselection criteria. These backgrounds often arise within a hadronic jet because of particle decays in the showering process, particle misidentification or particleinteractions with the detector material. As it is challenging to model these processes with high accuracy in simulation, their estimation typically uses data-driven methods.Three methods for carrying out this estimation are described, along with their implementation in ATLAS and their performance

    Search for the Zγ decay mode of new high-mass resonances in pp collisions at s = 13 TeV with the ATLAS detector

    No full text
    This letter presents a search for narrow, high-mass resonances in the Zγ final state with the Z boson decaying into a pair of electrons or muons. The TeV pp collision data were recorded by the ATLAS detector at the CERN Large Hadron Collider and have an integrated luminosity of 140 fb−1. The data are found to be in agreement with the Standard Model background expectation. Upper limits are set on the resonance production cross section times the decay branching ratio into Zγ. For spin-0 resonances produced via gluon–gluon fusion, the observed limits at 95% confidence level vary between 65.5 fb and 0.6 fb, while for spin-2 resonances produced via gluon–gluon fusion (or quark–antiquark initial states) limits vary between 77.4 (76.1) fb and 0.6 (0.5) fb, for the mass range from 220 GeV to 3400 GeV

    Pursuit of paired dijet resonances in the Run 2 dataset with ATLAS

    Get PDF
    New particles with large masses that decay into hadronically interacting particles are predicted by many models of physics beyond the Standard Model. A search for a massive resonance that decays into pairs of dijet resonances is performed using..

    Measurement of the t t ¯ cross section and its ratio to the Z production cross section using pp collisions at s = 13.6 TeV with the ATLAS detector

    No full text

    Measurements of Higgs boson production by gluon-gluon fusion and vector-boson fusion using H→WW*→eνμν decays in pp collisions at s=13 TeV with the ATLAS detector

    Get PDF
    Higgs boson production via gluon-gluon fusion and vector-boson fusion in proton-proton collisions is measured in the H → W W ∗ → e ν μ ν decay channel. The Large Hadron Collider delivered proton-proton collisions at a center-of-mass energy of 13 TeV between 2015 and 2018, which were recorded by the ATLAS detector, corresponding to an integrated luminosity of 139     fb − 1 . The total cross sections for Higgs boson production by gluon-gluon fusion and vector-boson fusion times the H → W W ∗ branching ratio are measured to be 12.0 ± 1.4 and 0.75   + 0.19 − 0.16     pb , respectively, in agreement with the Standard Model predictions of 10.4 ± 0.6 and 0.81 ± 0.02     pb . Higgs boson production is further characterized through measurements of Simplified Template Cross Sections in a total of 11 kinematic fiducial regions
    corecore