35,900 research outputs found

    Electrically-controllable RKKY interaction in semiconductor quantum wires

    Full text link
    We demonstrate in theory that it is possible to all-electrically manipulate the RKKY interaction in a quasi-one-dimensional electron gas embedded in a semiconductor heterostructure, in the presence of Rashba and Dresselhaus spin-orbit interaction. In an undoped semiconductor quantum wire where intermediate excitations are gapped, the interaction becomes the short-ranged Bloembergen-Rowland super-exchange interaction. Owing to the interplay of different types of spin-orbit interaction, the interaction can be controlled to realize various spin models, e.g., isotropic and anisotropic Heisenberg-like models, Ising-like models with additional Dzyaloshinsky-Moriya terms, by tuning the external electric field and designing the crystallographic directions. Such controllable interaction forms a basis for quantum computing with localized spins and quantum matters in spin lattices.Comment: 5 pages, 1 figur

    On scheduling an unbounded batch machine

    Get PDF
    2002-2003 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Analytical technology aided optimization and scale-up of impinging jet mixer for reactive crystallization process

    Get PDF
    Reactive crystallization is widely used in the manufacture of active pharmaceutical ingredients (APIs). Since APIs often have low solubility, traditional stirred tank reactors and the route of process operation and control using metastable zone width are not effective. The current work investigated the integration of an impinging jet mixer and a stirred tank crystallizer that can take advantage of both the reaction and crystallization characteristics, the focus being on design optimization and scale-up using process analytical techniques based on the Fourier transform Infrared spectroscopy and Focused Beam Reflectance Measurement, as well as X-ray diffraction and particle imaging Morphologi G3. The parameters for process operation and design of the impinging jet mixer were optimized. The research was carried out with reference to the manufacture of an antibiotic, sodium cefuroxime, firstly in a 1L reactor, then a 10L reactor. The crystals produced showed higher crystallinity, narrower size distribution, higher stability and purity

    Provably scale-covariant networks from oriented quasi quadrature measures in cascade

    Full text link
    This article presents a continuous model for hierarchical networks based on a combination of mathematically derived models of receptive fields and biologically inspired computations. Based on a functional model of complex cells in terms of an oriented quasi quadrature combination of first- and second-order directional Gaussian derivatives, we couple such primitive computations in cascade over combinatorial expansions over image orientations. Scale-space properties of the computational primitives are analysed and it is shown that the resulting representation allows for provable scale and rotation covariance. A prototype application to texture analysis is developed and it is demonstrated that a simplified mean-reduced representation of the resulting QuasiQuadNet leads to promising experimental results on three texture datasets.Comment: 12 pages, 3 figures, 1 tabl

    The unbounded single machine parallel batch scheduling problem with family jobs and release dates to minimize makespan

    Get PDF
    Author name used in this publication: Z. H. LiuAuthor name used in this publication: T. C. E. Cheng2003-2004 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Single machine batch scheduling problem with family setup times and release dates to minimize makespan

    Get PDF
    Author name used in this publication: Z. H. LiuAuthor name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2006-2007 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    A machine learning method to quantitatively predict alpha phase morphology in additively manufactured Ti-6Al-4V

    Full text link
    Quantitatively defining the relationship between laser powder bed fusion (LPBF) process parameters and the resultant microstructures for LPBF fabricated alloys is one of main research challenges. To date, achieving the desired microstructures and mechanical properties for LPBF alloys is generally done by time-consuming and costly trial-and-error experiments that are guided by human experience. Here, we develop an approach whereby an image-driven conditional generative adversarial network (cGAN) machine learning model is used to reconstruct and quantitatively predict the key microstructural features (e.g., the morphology of martensite and the size of primary and secondary martensite) for LPBF fabricated Ti-6Al-4V. The results demonstrate that the developed image-driven machine learning model can effectively and efficiently reconstruct micrographs of the microstructures within the training dataset and predict the microstructural features beyond the training dataset fabricated by different LPBF parameters (i.e., laser power and laser scan speed). This study opens an opportunity to establish and quantify the relationship between processing parameters and microstructure in LPBF Ti-6Al-4V using a GAN machine learning-based model, which can be readily extended to other metal alloy systems, thus offering great potential in applications related to process optimisation, material design, and microstructure control in the additive manufacturing field
    corecore