
The unbounded single machine parallel batch
scheduling problem with family jobs and release dates

to minimize makespan

J.J. YUAN1,3, Z.H. Liu2,3, C.T. NG3 and T.C.E. CHENG3∗

1Department of Mathematics, Zhengzhou University,

Zhengzhou, Henan 450052, People’s Republic of China

2Department of Mathematics, East China University of Science and Technology,

Shanghai 200237, People’s Republic of China

3Department of Logistics, The Hong Kong Polytechnic University,

Hung Hom, Kowloon, Hong Kong, People’s Republic of China

ABSTRACT

In this paper we consider the unbounded single machine parallel batch scheduling problem
with family jobs and release dates to minimize makespan. We show that this problem

is strongly NP-hard, and give an O n n
m
+ 1

m
time dynamic programming algorithm

and an O(mkk+1P 2k−1) time dynamic programming algorithm, where n is the number of
jobs, m is the number of families, k is the number of distinct release dates and P is the
sum of the processing times of all families. We further give a heuristic with a performance
ratio 2. We also give a polynomial-time approximation scheme (PTAS) for the problem.

Keywords: Scheduling; Family; Batching; Makespan

1 Introduction and Problem Formulation

Let n jobs J1, J2, ..., Jn and a single machine that can process the jobs concurrently in
batches be given. Each job Jj has a processing time pj and a release date rj . The jobs
are processed in batches, where a batch is a subset of the jobs and we require that the
batches form a partition of the set of all jobs. The processing time of a batch is equal to

∗Corresponding author

1

the maximum processing time among the jobs in the batch, i.e., the processing time of a
batch B is defined as pB = max{pj : Jj ∈ B}.
Suppose that a batch sequence (which indicates the processing order of a certain batch

partition of the jobs) is given and we will process the batched jobs according to this batch
sequence. We require that the starting time of a batch is at least the maximum release date
of the jobs in it. So, we define the release date of a batch B as rB = max{rj : Jj ∈ B}.
When the objective function considered is regular, we suppose that all the jobs in the
same batch start simultaneously at the earliest possible starting time. Consequently, the
starting time of each batch is determined by the batch sequence. For a batch B, if the
starting time of B is sB, then the completion time of B and all the jobs in B is simply
sB + pB. Following [3] and [9], we call this model the parallel batch scheduling problem
and denote it by

1|p-batch; rj|f,
where f is the objective function to be minimized, and “p-batch” means that the jobs
contained in the same batch are processed in parallel, i.e., concurrently, so that the
processing time of a batch is equal to the maximum processing time among the jobs in
the batch.

The parallel batch scheduling problem is one of the important modern scheduling
models that has received much attention in the literature. The fundamental model of
the parallel batch scheduling problem was first introduced by Lee et al. [10] with the
restriction that the number of jobs in each batch is bounded by a number b, which
is denoted by 1|p-batch; b < n|f . This bounded model is motivated by the burn-in
operations in semiconductor manufacturing [10]. For example, a batch of integrated
circuits (jobs) may be put inside an oven of limited size to test for their thermal standing
ability. The circuits are heated inside the oven until all circuits are burned. The burn-in
time of the circuits (job processing times) may be different. When a circuit is burned, it
has to wait inside the oven until all circuits are burned. Therefore, the processing time of
a batch of circuits is the processing time of the longest job in the batch.

An extensive discussion of the unbounded version of the parallel batch scheduling
problem was provided in [1]. This unbounded model can be applied, for example, to
situations where the batch contents are heated in a sufficiently large kiln and so the batch
size is not restricted [1].

Recent developments of this topic can be found in [2] and from the web site [3]. In
addition, [4], [6], [7], [11] and [12] presented new complexity results and approximation
algorithms for the parallel batch scheduling problem subject to release dates.

In this paper we consider a generalization of the unbounded single machine parallel
batch scheduling problem. Suppose that we have m families of jobs F1,F2, ...,Fm, which
partition the job set {J1, J2, ..., Jn}. Jobs from the same family are processed in batches
while jobs from different families cannot be contained in the same batch. We call this
problem the “unbounded single machine parallel batch scheduling with family jobs”. The
objective we consider in this paper is to minimize the makespan with release dates. In

2

the sequel, this problem will be denoted by

1|family-jobs; p-batch; rj|Cmax.

We show in this paper that the problem 1|family-jobs; p-batch; rj|Cmax is strongly
NP-hard. We give an O n n

m
+ 1

m
time dynamic programming algorithm and an

O(mkk+1P 2k−1) time dynamic programming algorithm for the problem, where n is the
number of jobs, m is the number of families, k is the number of distinct release dates and
P is the sum of the processing times of all families. We further give a heuristic with a
performance ratio 2. We also give a polynomial-time approximation scheme (PTAS) for
the problem.

2 A Useful Lemma

We first give an easy lemma, which will be used in the following sections.

Lemma 2.1 For the problem 1|family-jobs; p-batch; rj|Cmax, there is an optimal
batch sequence BS = (B1, B2, ..., Bb) such that if two jobs Ji and Jj belong to the same
family, where Ji ∈ Bx and Jj ∈ By with x < y, then pi > pj .
Proof Let BS = (B1, B2, ..., Bb) be an optimal batch sequence for which the property

of Lemma 2.1 does not hold. Then there are two jobs Ji and Jj that belong to the same
family Ff such that Ji ∈ Bx and Jj ∈ By with x < y, but pi ≤ pj . We obtain a
new batch sequence BS I by shifting the job Ji from Bx to By. It is easy to see that
Cmax(BS

I) ≤ Cmax(BS), and so BS I is optimal, too.
Continuing this procedure, we eventually obtain an optimal batch sequence with the

required property.

2

Corollary 2.2 There is an optimal batch sequence BS = (B1, B2, ..., Bb) for the
problem 1|family-jobs; p-batch; rj|Cmax such that each batch Bx of family Ff is in the
form Bx = {Jj ∈ Ff : l ≤ pj ≤ u} for some numbers l and u.

3 NP-hardness Proof

We need the following strongly NP-complete 3-Partition problem.

3-Partition Problem: Given a set of 3t integers a1, a2,, a3t, each of size between
B/4 and B/2, such that 3t

i=1 ai = tB, is there a partition of the ai’s into t groups of 3,
each summing exactly to B?

By Garey and Johnson [8], we have

3

Lemma 3.1 The 3-Partition problem is strongly NP-complete.

Theorem 3.2 The problem 1|family-jobs; p-batch; rj|Cmax is strongly NP-hard.
Proof: The decision version of the problem is clearly in NP. To prove its NP-

completeness, we use the strongly NP-complete 3-Partition problem for our reduction.

For a given instance of the 3-Partition problem with a1, a2, ..., a3t, where
1
t

3t
i=1 ai = B,

we construct an instance of the decision version of the problem 1|family-jobs; p-batch; rj|Cmax
as follows.

• Three key numbers are used in the construction:
∆ = t2B + 1,

Z = t∆B +
1

2
(t2 − t)B + 1,

X = t∆B +
1

2
(t2 − t)(3Z +B) + 1;

• 3t2 jobs: J(i,j), 1 ≤ i ≤ 3t, 1 ≤ j ≤ t;
• 3t families F1,F2, ...,F3t, where

Fi = {J(i,j) : 1 ≤ j ≤ t}, 1 ≤ i ≤ 3t;
• Processing times of the jobs are defined as

p(i,j) = (t+ 1− j)(Z + ai), 1 ≤ i ≤ 3t, 2 ≤ j ≤ t,
and

p(i,1) = X +∆ai, 1 ≤ i ≤ 3t;
• Release dates of the jobs are defined as

r(i,j) = 3(j − 1)X + (j − 1)∆B, 1 ≤ i ≤ 3t, 1 ≤ j ≤ t;
• Threshold value of the makespan is defined as

Y = 3tX + t∆B +
1

2
(t2 − t)(3Z +B).

The decision version of the problem 1|family-jobs; P-batch; rj|Cmax asks whether there is
a batch sequence BS such that the makespan Cmax(BS) ≤ Y .
Clearly, the construction can be done in polynomial time. We show in the sequel that

the instance of the 3-Partition problem has a solution if and only if there is a batch se-
quence BS for the constructed instance of the scheduling problem such that the makespan
Cmax(BS) ≤ Y .
Set r(j) = 3(j−1)X+(j−1)∆B, 1 ≤ j ≤ t. Then r(i,j) = r(j), i.e., r(i,j) is independent

of i. We will call J(i,j) the j-th job of family Fi.

4

If the 3-Partition problem has a solution, we can re-lable the indices of a1, a2, ..., a3t
such that

a3i−2 + a3i−1 + a3i = B, for 1 ≤ i ≤ t.
We construct a batch sequence BS of the scheduling problem as follows.

Each family Ff , 1 ≤ f ≤ 3(t− 1) is divided into two batches Bf and Af such that

Bf = {J(f,j) : 1 ≤ j ≤ {1
3
fQ}

and

Af = {J(f,j) : {1
3
fQ < j ≤ t}.

Each family Ff , f = 3t − 2, 3t − 1, 3t, acts as a batch. We write Bf = Ff for f =
3t − 2, 3t − 1, 3t in the following. The batches are processed according to the following
order under BS:

B1,B2,B3, ...,B3i−2,B3i−1,B3i, ...,B3t−2,B3t−1,B3t,A1,A2,A3, ...,A3t−5,A3t−4,A3t−3.

It is not hard to verify that, under the above batch sequence BS, Cmax(BS) = Y .
Hence, the scheduling problem has the required batch sequence.

Now suppose that the scheduling problem has a required batch sequence. We need to
show that the 3-Partition problem has a solution. By Lemma 2.1, we have the following
claim.

Claim 1 There is a required batch sequence BS = (B1, B2, ...Bm) of the scheduling
problem such that

(1) for every two jobs J(f,i) and J(f,j) of any family Ff with i < j, either J(f,i) and
J(f,j) are included in the same batch, or J(f,i) is included in a batch with an index smaller
than that of the batch that contains J(f,j), i.e., C(f,i)(BS) ≤ C(f,j)(BS);
(2) the job indices in each batch are consecutive, i.e., if B is a batch of family Ff

under BS, then for every two jobs J(f,i), J(f,j) ∈ B with i < j, {J(f,k) : i ≤ k ≤ j} ⊆ B.
Let BS = (B1, B2, ...Bm) be a batch sequence of the scheduling problem that satisfies

the properties in Claim 1. We need more properties of BS.

For each i, 1 ≤ i ≤ 3t, let Bi be the batch in BS such that J(i,1) ∈ Bi. Then, Bi ⊆ Fi.
Let mi = |Bi|. Then, by Claim 1, we have

Bi = {J(i,j) : 1 ≤ j ≤ mi}.
For convenience, we re-enumerate the families of jobs such that

m1 ≤ m2 ≤ ... ≤ m3t.

Claim 2 m3i ≤ i for 1 ≤ i ≤ t.

5

Suppose to the contrary that m3i ≥ i + 1 for some i, 1 ≤ i ≤ t. Then the earliest
starting time of the batches in {Bx : 3i ≤ x ≤ 3t} is at least r(i+1) = 3iX + i∆B > 3iX.
Hence, the makespan is estimated as

Cmax(BS) > r
(i+1) + (3t− 3i+ 1)X ≥ 3tX +X > Y.

This contradicts our assumption.

Claim 3 mi = {13 iQ for 1 ≤ i ≤ 3t.
In fact, by Claim 2, each family Fi with mi ≤ 3(t − 1) is splitted into at least two

batches such that the sum of the processing times of these batches is at least (X+∆ai)+
(t−mi)(Z + ai) > X + (t−mi)Z. So, the makespan can be estimated as

Cmax(BS) > 3tX + 3t
2Z −

1≤i≤3t
miZ.

Since Cmax(BS) ≤ Y = 3tX + t∆B + 1
2
(t2 − t)(3Z +B), we have

3tX + 3t2Z −
1≤i≤3t

miZ < 3tX + t∆B +
1

2
(t2 − t)(3Z +B),

i.e.,

1≤i≤3t
miZ >

3

2
(t2 + t)Z − t∆B − 1

2
(t2 − t)B = 3

2
(t2 + t)Z − Z + 1.

So,

1≤i≤3t
mi >

3

2
(t2 + t)− 1 + 1

Z
.

By the integrality of mi, we deduce that

1≤i≤3t
mi ≥ 3

2
(t2 + t).

Since
3

2
(t2 + t) =

1≤i≤3t
{1
3
iQ,

we then have

1≤i≤3t
mi ≥

1≤i≤3t
{1
3
iQ,

or equavilently,

1≤i≤3t
(mi − {1

3
iQ) ≥ 0.

By Claim 2, mi ≤ {13iQ, and so mi − {13 iQ ≤ 0 for each i. This implies that the only
possiblity is that mi = {13iQ for each i, as required.

6

Claim 4 Each family Fi, 1 ≤ i ≤ 3(t− 1), is divided into just two batches under π.
Otherwise, some family Fk (1 ≤ k ≤ 3(t − 2)) is divided into at least three batches

under π. By Claim 3, two of these batches have processing times X + ∆ak > X and
(t−mk)(Z+ak) > (t−mk)Z, and each of the remaining batches has at least a processing
time Z + ak ≥ Z. So, the sum of the processing times of the batch Fk is greater than
Z +X + (t−mk)Z. The sum of the processing times of the batches of any other family
Fi is at least (X + tai) + (t−mi)(Z + ai) > X + (t−mi)Z. Hence, the makespan of BS
is estimated as

Cmax(BS)

> Z + 1≤i≤3t(X + (t−mi)Z)

= Z + 3tX + 3t2Z − 1≤i≤3t{13iQZ
= Z + 3tX + 3

2
(t2 − t)Z

> 3tX + t∆B + 1
2
(t2 − t)(3Z +B)

= Y,

a contradiction.

Set Ai = Fi \Bi, for 1 ≤ i ≤ 3t. By Claim 1(2), Claim 3 and Claim 4, each family Fi,
1 ≤ i ≤ 3(t− 1), is divided into two batches Bi and Ai under BS, and we have

Bi = {J(i,j) : 1 ≤ j ≤ { i
3
Q}, for 1 ≤ i ≤ 3t,

and

Ai = {J(i,j) : { i
3
Q+ 1 ≤ j ≤ t}, for 1 ≤ i ≤ 3(t− 1).

Now, for 1 ≤ k ≤ t, write αk = a3k−2 + a3k−1 + a3k. Then, t
k=1 αk = tB. We notice

the following facts:

(1) The common release date of B3k−2, B3k−1 and B3k is r(k) = 3(k−1)X+(k−1)∆B.
(2)The common release date of Ai, 1 ≤ i ≤ 3(t− 1), is r(t) > r(k), 1 ≤ k ≤ t− 1.
(3) |B3k−2| = |B3k−1| = |B3k| = k for 1 ≤ k ≤ t; and |A3k−2| = |A3k−1| = |A3k| = t− k

for 1 ≤ k ≤ t− 1.
For each k with 1 ≤ k ≤ t, we consider the batches

B3k−2,B3k−1, ...,B3t,A1,A2, ...,A3(t−1).
Since the minimum release date of these batches is r(k), the makespan Cmax(BS) is greater
than or equal to the value obtained by summing up r(k) and the processing times of these
batches. Now,

r(k) = 3(k − 1)X + (k − 1)∆B,
and the sum of the processing times of the jobs in these batches is

3(t− k + 1)X +∆
k≤i≤t

αi +
1≤i≤t

i(3Z + αi).

7

Hence,

Cmax(BS) ≥ 3Xt+ (k − 1)∆B +∆
k≤i≤t

αi +
3

2
t(t− 1)Z +

1≤i≤t
(t− i)αi.

By the assumption of Cmax(BS) ≤ Y = 3tX + t∆B+ 3
2
t(t− 1)Z + 1

2
t(t− 1)B, we deduce

that
(∗) : ∆

k≤i≤t
αi ≤ ∆(t− k + 1)B +

1≤i≤t
(t− i)(B − αi).

This implies that

∆
k≤i≤t

αi ≤ ∆(t− k + 1)B +∆− 1, 1 ≤ k ≤ t,

or equivalently

k≤i≤t
αi ≤ (t− k + 1)B + 1− 1

∆
.

By the integrality of αi, we deduce the following t inequalities (Ik), 1 ≤ k ≤ t:
(Ik) :

k≤i≤t
αi ≤ (t− k + 1)B.

By setting k = 1 in the inequality (∗), we obtain

1≤i≤t
(t− i)(B − αi) ≥ 0, 1 ≤ k ≤ t.

This can be rewriten as

1≤i≤t
iαi ≥

1≤i≤t
iB,

i.e.,

1≤k≤t k≤i≤t
αi ≥

1≤k≤t
(t− k + 1)B.

Combining this with the t inequalities Ik (1 ≤ k ≤ t), we deduce that

k≤i≤t
αi = (t− k + 1)B, for 1 ≤ k ≤ t.

Consequently,
αk = B, for 1 ≤ k ≤ t.

Hence, the 3-Partition problem has a solution. The result follows. 2

Recall the following NP-complete Equal-size 2-Partition problem [8].

Equal-size 2-Partition Given a set of 2t positive integers a1, a2,, a2t such that
2t
i=1 ai = 2B, is there a partition of the ai’s into 2 groups of t, each summing exactly to

B?

8

By using the NP-complete Equal-size 2-Partition problem for the reduction, we can
further prove the following two results.

Theorem 3.3 The problem 1|family-jobs; p-batch; rj|Cmax is NP-hard even when
the jobs have at most 2 distinct release dates.

Proof Similar to the proof of Theorem 3.2. 2

4 Algorithms

Consider the problem 1|family-jobs; p-batch; rj|Cmax. By Corollary 2.2, if there are two
jobs Ji and Jj in the same family such that ri ≤ rj and pi ≤ pj , we can delete the job Ji
from the job system. This procedure requires only O(n) time. Hence, in the sequel, we
can suppose that any two jobs Ji and Jj in the same family have different release dates
and different processing times, and furthermore ri < rj implies pi > pj.

The algorithms presented in this section include: an O n n
m
+ 1

m
time dynamic

programming algorithm; an O(mkk+1P 2k−1) time dynamic programming algorithm, where
n is the number of jobs, m is the number of families, k is the number of distinct release
dates and P is the sum of the processing times of all families; a heuristic with a perfor-
mance ratio 2; and a polynomial time approximation scheme.

4.1 A genaral dynamic programming algorithm

Suppose that we have m families F1,F2, ...,Fm, and each family is in the form

Fi = {J(i,1), J(i,2), ..., J(i,ni)}, 1 ≤ i ≤ m.

Suppose further that the jobs are enumerated such that

r(i,1) < r(i,2) < ... < r(i,ni), 1 ≤ i ≤ m,

and
p(i,1) > p(i,2) > ... > r(i,ni), 1 ≤ i ≤ m.

For a nonnegative integer x, write

F (x)i = {J(i,j) : 1 ≤ j ≤ x}, 1 ≤ i ≤ m.

For m integers x1, x2, ..., xm with 0 ≤ xi ≤ ni, 1 ≤ i ≤ m, let R(x1, x2, ..., xm) be
the minimum makespan of the problem 1|family-jobs; p-batch; rj|Cmax restricted to the
m subfamilies of jobs

F (x1)1 ,F (x2)
2 , ...,F (xm)m .

9

Consider an optimal batch sequence BS for the problem 1|family-jobs; p-batch; rj|Cmax
restricted to the fimilies F (x1)1 ,F (x2)

2 , ...,F (xm)m such that BS satisfies the property de-
scribed in Lemma 2.1. If the last batch Bb in BS is a subset of Fi and the maximum
release date of the jobs in Bb is rBb ∈ {r(i,j) : 1 ≤ j ≤ xi}, then we have

R(x1, x2, ..., xm)

= max{rBb, R(x1, ..., xi−1, xi − |Bb|, xi+1, ..., xm)}+ PBb ,
where rBb = r(i,xi) is the release date of the last job in Bb and PBb = p(i,xi−|Bb|+1) is the
processing time of the first job in Bb. Hence, our dynamic programming recursion can be
expressed as

R(x1, x2, ..., xm) =

min
1≤i≤m,1≤yi≤xi−1

max{r(i,xi), R(x1, ..., xi−1, yi, xi+1, ..., xm)}+ p(i,yi+1).

The initial condition is given by

R(0, 0, ..., 0) = 0.

The dynamic programming function has at most

(n1 + 1)(n2 + 1)...(nm + 1) ≤ n

m
+ 1

m

states. Each recursion runs only O(n) time, since we have at most O(n) choices for (i, yi)
with 1 ≤ i ≤ m and 1 ≤ yi ≤ ni. Hence, the overall complexity of the above dynamic
programming recursion is O n n

m
+ 1

m
.

One interesting corollary of the above discussion is that, when m = 1, the problem
becomes the unbouned parallel batch scheduling problem to minimize makespan, i.e.,
1|p-batch, rj|Cmax [2, 13], and can be solved inO(n2) time. The complexity of this problem
was posed as open in [3], but in fact, an O(n2) time algorithm was implied in [11].

4.2 A pseudopolynomial dynamic programming formulation un-
der fixed number of release dates

Let k distinct release dates be given: R1, R2, . . . , Rk, satisfying R1 < R2 < · · · < Rk.
Then, the interval [R1,+∞) is divided into k segments [R1, R2), [R2, R3), . . . , [Rk, Rk+1),
where Rk+1 = +∞.
Let g(a1, . . . , ak) denote the minimummakespan of the schedules for the n jobs, subject

to the constraint that the first batch starting in [Ri, Ri+1) (if it exists) starts at time ai
(i = 1, 2, . . . , k). Clearly, we may require a1 = R1 and Ri ≤ ai < min{Ri+1, Ri + P}
(2 ≤ i ≤ k), where P = m

f=1max
nf
j=1 p(f,j). Then, (a1, . . . , ak) has at most O(P

k−1)
configurations.

10

Now assume that some (a1, . . . , ak) is given. To compute g(a1, . . . , ak), we further
introduce h(j; l1, . . . , lk) (0 ≤ j ≤ m) as the minimum makespan to schedule the jobs of
families F1,F2, . . . ,Fj , subject to the constraints that, for i = 1, 2, . . . , k,

(i) the first batch starting in [Ri, Ri+1) (if it exists) starts at ai;

(ii) the total processing time of the batches starting in [Ri, Ri+1) is li.

Then, g(a1, . . . , ak) = min(l1,...,lk) h(m; l1, . . . , lk), where (l1, . . . , lk) satisfies

(i) 0 ≤ li ≤ P (1 ≤ i ≤ k);
(ii) ai + li ≤ ai+u if li+1 = li+2 = · · · = li+u−1 = 0 and li+u W= 0 (1 ≤ i ≤ k − 1,

1 ≤ u ≤ k − i).

h(m; l1, . . . , lk) can be computed recursively. Initially, we define h(0; 0, . . . , 0) = ak and
for other cases, h(0; l1, . . . , lk) = +∞. Then, for j = 1, 2, . . . ,m,

h(j; l1, . . . , lk) = min
(δ1,...,δk)

{h(j − 1; l1 − δ1, . . . , lk − δk) + δk},

where δi (i = 1, 2, . . . , k) is the processing time of the batch of Fj starting in [Ri, Ri+1) and
satisfies 0 ≤ li − δi ≤ Ri+1 − ai if δi W= 0. Since there are at most O(nkj) ≤ O(kk) ways to
partition the jobs of Fj into k sets, i.e., (δ1, . . . , δk) has at most O(kk) configurations, and
each recursion requires O(kk+1) time. The size of the domain of h(j; l1, . . . , lk) is O(mP

k).
Thus, g(a1, . . . , ak) is obtained in O(mk

k+1P k) time. The globally optimal schedule is
obtained by considering all configurations of (a1, . . . , ak), which requires O(mk

k+1P 2k−1)
time.

4.3 A heuristic

Consider the following heuristic for the problem 1|family-jobs; p-batch; rj|Cmax.
Algorithm 4.3.1 Family Batchng Rule: Each family acts as a batch.

First, we re-enumerate the families F1, ...,Fm such that
rF1 ≤ rF2 ≤ ... ≤ rFm .

Then, set BS = (F1, ...,Fm).
Theorem 4.3.2 Family Batching Rule is a 2-approximation algorithm for the prob-

lem 1|family-jobs; p-batch; rj|Cmax.
Proof Let Coptmax be the minimummakespan for the problem 1|family-jobs; p-batch; rj|Cmax.

Two obvious lower bounds for Coptmax are

Coptmax ≥ max{rj : 1 ≤ j ≤ n} = max{rFi : 1 ≤ i ≤ m}

11

and
Coptmax ≥

1≤i≤m
pFi.

Furthermore, an obvious upper bound for Cmax(BS) is

Cmax(BS) ≤ max{rj : 1 ≤ j ≤ n}+
1≤i≤m

pFi,

where BS is the batch sequence obtained by the Family Batching Rule (Algorithm 4.3.1).
It follows that

Cmax(BS) ≤ 2Coptmax.

2

The result of Theorem 4.3.2 is the best possible. To see this, let ε > 0 be any small posi-
tive number. We will construct an instance I of the problem 1|family-jobs; p-batch; rj|Cmax
such that the batch sequence obtained by the Family Batching Rule on I is not a (2− ε)-
approximation solution.

We have m families F1, ...,Fm, where m ≥ 2
ε
. Each family Fi has two jobs, i.e.,

Fi = {J(i,1), J(i,2)}.

The proceesing times of the jobs are defined as

p(i,1) = m and p(i,2) = 1, 1 ≤ i ≤ m.

The release dates of the jobs are defined as

r(i,1) = 0 and r(i,2) = m
2, 1 ≤ i ≤ m.

One can verify that one of the optimal batch sequences is

({J(1,1)}, {J(1,1)}, ..., {J(m,1)}, {J(1,2)}, {J(2,2)}, ..., {J(m,2)},

and the minimum makespan is given by Coptmax = m
2+m. But the batch sequence obtained

by the Family Batching Rule is

BS = (F1, ...,Fm),

and the makespan of BS is

Cmax(BS) = 2m
2 > (2− ε)(m2 +m) = (2− ε)Coptmax.

Hence, the result of Theorem 4.3.2 is the best possible.

12

4.4 A polynomial time approximation scheme

In this section we will derive a polynomial time approximation scheme for the scheduling
problem. First, we give a lemma that allows us to focus on the special case with a constant
number of distinct release dates.

Lemma 4.4.1 Given a PTAS for the special case with a constant number of distinct
release dates, then there exists a PTAS for the general problem.

Proof Let 6 > 0 be given. Define rmax = max1≤i≤n ri and δ = 6rmax/2. Note that
δ ≤ 6Coptmax/2, since rmax ≤ Coptmax, where C

opt
max denotes the optimal objective value. Round

each release date ri down to the nearest multiple of δ, i.e.,

r∗i = δuri/δJ (i = 1, 2, . . . , n) .

Clearly, the number of distinct r∗i is no more than 1+rmax/δ = 1+2/6, which is a constant
number for a given 6. Let C∗max denote the optimal objective value for the problem with
the scaled release dates r∗i . Consider a (1 + 6/2)-approximation solution to the problem
with the scaled release dates. Add δ to each batch’s start time in the solution. Then we
get a feasible schedule with respect to the release dates ri, the Cmax of which is bounded
by

(1 + 6/2)C∗max + δ ≤ (1 + 6)Coptmax ,

where C∗max ≤ Coptmax is applied. 2

In the following, we present an FPTAS for the special case with a constant number k
of distinct release dates. This is done by applying the well-known rounding technique to
the dynamic programming formulation in Section 4.2.

Given 6 > 0, we define ν = 6P/(n+ 1). Let

r∗i = {ri/νQ ,
p∗i = upi/νJ (i = 1, 2, . . . , n).

Suppose that we have found an optimal schedule and its objective value C∗max for the
problem with the scaled parameters r∗i and p

∗
i by the dynamic program in Section 4.2.

Increase each processing time p∗i by pi/ν − p∗i , which increases the objective value by at
most n. Now consider 1/ν to be a unit of time. Then we can get a schedule with respect
to ri and pi, and its objective value is given by

Cmax ≤ νC∗max + nν .

Also, consider an optimal schedule with respect to ri and pi, the objective value of which
is denoted by Coptmax. Delay the starting of each batch by ν units of time in the schedule,
and consider ν to be a unit of time. We obtain a schedule with the objective value

C Imax = 1 + C
opt
max/ν .

13

Obviously, C∗max ≤ C Imax holds. Thus,
Cmax ≤ Coptmax + (n+ 1)ν = C

opt
max + 6P ≤ (1 + 6)Coptmax .

The time complexity of the approximation scheme is dominated by the step to solve the
problem with the scaled parameters. Let P ∗ = m

f=1max
nf
j=1 p(f,j)

∗. Clearly, it holds that

P ∗ ≤ P
ν
=
n+ 1

6
.

Thus, the running time of the approximation scheme is bounded by

O mkk+1P ∗2k−1 ≤ O mkk+1
n+ 1

6

2k−1
,

which is polynomial for given k and 1/6. In other words, the approximation scheme is an
FPTAS.

Acknowledgements

This research was supported in part by the Research Grant Council of Hong Kong un-
der grant numbers PolyU B.23.37.Q454 and G-YW59. The first two authors were also
supported by the National Natural Science Foundation of China under grant numbers
10371112 and 10101007.

References

[1] P. Brucker, A. Gladky, H. Hoogeveen, M.Y. Kovalyov, C.N. Potts, T. Tauten-
hahn and S.L. van de Velde, Scheduling a batching machine, Journal of Scheduling,
1(1998), 31-54.

[2] P. Brucker, Scheduling Algorithms, Springer-Verlag, Berlin, 2001.

[3] P. Brucker and S. Knust, Complexity results for scheduling problems, http://www.
mathematik.uni-osnabrueck.de/research/OR/class/, 2003.

[4] T.C.E. Cheng, Z.H. Liu and W.C. Yu, Scheduling jobs with release dates and dead-
lines on a batch processing machine, IIE Transactions, 33(2001), 685-690.

[5] E.G. Coffman, M. Yannakakis, M.J. Magazine and C. Santos, Batch sizing and se-
quencing on a single machine, Annals of Operations Research, 26(1990), 135-147.

[6] X. Deng and Y.Z. Zhang, Minimizing mean response time for batch processing sys-
tems, Lecture Notes in Computer Science, 1627(1999), 231-240.

14

[7] X. Deng, C.K. Poon and Y.Z. Zhang, Approximation algorithms in batch processing,
Lecture Notes in Computer Science, 1741(2000), 153-162.

[8] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, Freeman, San Francisco, CA, 1979.

[9] J.K. Lenstra, A.H.G. Rinnooy Kan and P. Brucker, Complexity of machine scheduling
problems, Annals of Discrete Mathematics, 1(1977), 343-362.

[10] C.-Y. Lee, R. Uzsoy and L.A. Martin-Vega, Efficient algorithms for scheduling semi-
conductor burn-in operations, Operations Research, 40(1992), 764-775.

[11] Z.H. Liu and W.C. Yu, Scheduling one batch processor subject to job release dates,
Discrete Applied Mathematics, 105(2000), 129-136.

[12] Z.H. Liu, J.J. Yuan and T.C.E. Cheng, On scheduling an unbounded batch machine,
Operation Research Letters, 31(2003), 42-48.

[13] C.N. Potts and M.Y. Kovalyov, Scheduling with batching: a review, European Jour-
nal of Operational Research, 120(2000), 228-249.

15

