
Single machine batch scheduling problem with family
setup times and release dates to minimize makespan

J.J. YUAN1,3, Z.H. LIU2,3, C.T. NG3 and T.C.E. CHENG3∗

1Department of Mathematics, Zhengzhou University,

Zhengzhou, Henan 450052, People’s Republic of China
2Department of Mathematics, East China University of Science and Technology,

Shanghai 200237, People’s Republic of China
3Department of Logistics, The Hong Kong Polytechnic University,

Hung Hom, Kowloon, Hong Kong, People’s Republic of China

ABSTRACT

In this paper we consider the single machine batch scheduling problem with family setup
times and release dates to minimize makespan. We show that this problem is strongly

NP-hard, and give an O
(
n

(
n
m

+ 1
)m)

time dynamic programming algorithm and an

O(mkkP 2k−1) time dynamic programming algorithm for the problem, where n is the
number of jobs, m is the number of families, k is the number of distinct release dates and
P is the sum of the setup times of all the families and the processing times of all the jobs.
We further give a heuristic with a performance ratio 2. We also give a polynomial-time
approximation scheme (PTAS) for the problem.

Keywords: Scheduling; Family; Batching; Release dates; Makespan

1 Introduction and Problem Formulation

In the single machine, family jobs, batch scheduling problem (see [2, 6]), we have n
jobs J1, J2, ..., Jn that are partitioned into m families F1,F2, ...,Fm. Each job Jj has a
processing time pj, and each family Ff is associated with a setup time sf . The jobs in a
family are processed in batches, and each batch of jobs from family Ff will incur a setup

∗Corresponding author

1

This is the Pre-Published Version.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by PolyU Institutional Repository

https://core.ac.uk/display/61007597?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

time sf . The jobs in the same batch are required to be processed consecutively. For a
batch B, the processing time of B is defined as pB =

∑
Jj∈B pj.

There are two ways to define the completion time of a job. One is the item availability
model and the other is the batch availability model. In the item availability model, the
completion time of a job Jj in a batch B of family Ff under a schedule π is defined as

Cj(π) = SB(π) + sf +
∑

Ji∈φj(π)

pi,

where SB(π) is the starting time of the batch B under π, and φj(π) = {Ji ∈ B : i = j or
Ji is processed before Jj}. In the batch availability model, the completion time of a job
Jj in a batch B of family Ff under a schedule π is defined as the time when the last job
in this batch has finished processing, i.e.,

CB(π) = SB(π) + sf +
∑

Ji∈B

pi.

So, in the batch availability model, all the jobs in the same batch are completed together.
Recent developments of family scheduling with both item and batch availability can be
found in [7].

In the literature, the item availability model has been widely studied and is denoted
by 1|sf |V , where V is the objective function to be minimized. But the batch availability
model has mainly been studied for the special case with only one family of jobs. We will
denote the batch availability model by 1|sf ; batch|V .

The maximum lateness family scheduling problem 1|sf |Lmax was first studied by Bruno
and Downey [2]. They gave a binary NP-hardness proof for the problem 1|sf |Lmax. By
Bruno and Downey [2], 1|sf |Lmax is NP-hard even for either two distinct due dates, two
jobs per family, or three distinct due dates, three jobs per family, and equal setup times;
however, it is pseudo-polynomially solvable for a fixed number of due dates. The best
algorithm for the problem 1|sf |Lmax is a dynamic programming algorithm given by Ghosh
and Gupta [5] with a time bound O(m2Mm), where M = 1

m

∑
1≤f≤m |Ff |+ 1. Bruno and

Downey [2] first posed the question of whether the problem 1|sf |Lmax is strongly NP-hard.
Ghosh and Gupta [5] pointed out that the long-standing question as to whether 1|sf |Lmax

is strongly NP-hard had remained open. Recently, Cheng et al. [3] proved that the family
scheduling problem 1|sf |Lmax is strongly NP-hard.

Suppose that each job Jj has a release date rj. We require that, in any schedule, the
setup of the batch that contains job Jj cannot start before time rj. It is natural to define
the release date of a batch B as

rB = max{rj : Jj ∈ B}.

With release dates, the makespan minimization problem will be denoted by

1|sf , rj|Cmax.

2

It is obvious that 1|sf , rj|Cmax is equivalent to 1|sf ; batch; rj|Cmax.

The makespan scheduling problem is closely related to the maximum lateness schedul-
ing problem. In fact, it is easy to see that 1|sf , rj|Cmax is equivalent to 1|sf ; batch|Lmax,
since there is a schedule for 1|sf , rj|Cmax with makespan at most C∗ if and only if there
is a schedule for 1|sf ; batch|Lmax with maximum lateness at most 0, where

dj = C∗ − rj, for every job Jj.

However, this relation cannot be directly established between 1|sf , rj|Cmax and 1|sf |Lmax.
Hence, the strong NP-hardness of 1|sf |Lmax does not necessarily imply the strong NP-
hardness of 1|sf , rj|Cmax or, equivalently, 1|sf ; batch|Lmax.

We show in this paper that the problem 1|sf , rj|Cmax is strongly NP-hard even if the
processing times of the jobs are unit and the setup times of the families are identical.
(We would like to remark here that whether 1|sf = s|Lmax is strongly NP-hard remains
open. This explains the difference between 1|sf , rj|Cmax and 1|sf |Lmax.) We give an

O
(
n

(
n
m

+ 1
)m)

time dynamic programming algorithm and an O(mkkP 2k−1) time dy-
namic programming algorithm for the problem, where n is the number of jobs, m is the
number of families, k is the number of distinct release dates, and P is the sum of the
setup times of all the families and the processing times of all the jobs. We further give
a heuristic with a performance ratio 2 for the problem. We also give a polynomial-time
approximation scheme (PTAS) for the problem.

2 A Useful Lemma

We first give an easy lemma, which will be used in the following sections.

Lemma 2.1 For the problem 1|sf ; rj|Cmax, there is an optimal batch sequence
BS = (B1, B2, ..., Bb) such that if there exist two jobs Ji and Jj belonging to the same
family, where Ji ∈ Bx and Jj ∈ By with x < y, then ri < rj.

Proof Let BS = (B1, B2, ..., Bb) be an optimal batch sequence for which the property
of Lemma 2.1 does not hold. Then there are two jobs Ji and Jj that belong to the same
family Ff such that ri ≥ rj, Ji ∈ Bx and Jj ∈ By with x < y. We obtain a new batch
sequence BS ′ by shifting the job Jj from By to Bx, i.e., BS ′ = (B′

1, B
′
2, ..., B

′
b), such that

B′
i =





Bk, i 6∈ {x, y},
Bx ∪ {Jj}, i = x,

By \ {Jj}, i = y.

In the case By = {Jj}, B′
y = ∅ is assumed to be a dummy batch that still incurs the

setup time sf but has a release date 0. Since rBx ≥ ri ≥ rj, SB′x(BS ′) = SBx(BS), and
so the h-th batch B′

h has completion time CB′
h
(BS ′) ≤ CB′

h
(BS) + pj for x ≤ h ≤ y − 1

3

under the new batch sequence BS ′. By the fact that the starting time of By under BS is
SBy ≥ ri, the y-th new batch has completion time CB′y(BS ′) ≤ max{CB′y−1

(BS ′), SBy} +

sf + PBy − pj ≤ max{CBy−1(BS) + sf + PBy , SBy + sf + PBy − pj} ≤ CBy(BS), where
PBy =

∑
Ji∈By

pi. It follows that BS ′ is an optimal batch sequence, too.

Continuing this procedure, we eventually obtain an optimal batch sequence with the
required properties.

2

Corollary 2.2 There is an optimal batch sequence BS = (B1, B2, ..., Bb) for the
problem 1|sf ; rj|Cmax such that each batch Bx of family Ff is of the form Bx = {Jj ∈
Ff : l ≤ rj ≤ u} for some numbers l and u.

3 NP-hardness Proof

We need the following strongly NP-complete 3-Partition problem.

3-Partition Problem: Given a set of 3t integers a1, a2,, a3t, each of size between
B/4 and B/2, such that

∑3t
i=1 ai = tB, is there a partition of the ai’s into t groups of 3,

each summing exactly to B?

By Garey and Johnson [4], we have

Lemma 3.1 The 3-Partition problem is strongly NP-complete.

Theorem 3.2 The problem 1|sf = s, rj|Cmax is strongly NP-hard.

Proof: The decision version of the problem is clearly in NP. To prove the NP-
completeness, we use the strongly NP-complete 3-Partition problem for our reduction.

For a given instance of the 3-Partition problem with a1, a2, ..., a3t, where 1
t

∑3t
i=1 ai = B,

we construct an instance of the decision version of the problem 1|sf , rj|Cmax as follows.

• 3t(t + 1) jobs: J(i,j), 1 ≤ i ≤ 3t, 1 ≤ j ≤ t + 1;

• 3t families F1,F2, ...,F3t, where

Fi = {J(i,j) : 1 ≤ j ≤ t + 1}, 1 ≤ i ≤ 3t;

• Processing times of the jobs are defined as

p(i,j) = Z + ai, 1 ≤ i ≤ 3t, 1 ≤ j ≤ t + 1, where Z = t(t + 2)B;

• Setup times of the families are defined as

si = X, 1 ≤ i ≤ 3t, where X = (3t2 + 3t + 1)Z;

• Release dates of the jobs are defined as

r(i,j) = 3(j − 1)X +
3

2
j(j − 1)Z +

1

2
j(j − 1)B, 1 ≤ i ≤ 3t, 1 ≤ j ≤ t + 1;

4

• Threshold value of the makespan is defined as

Y = 6Xt + 3t(t + 1)Z + t(t + 1)B = 2
∑

1≤i≤3t

si +
∑

1≤i≤3t,1≤j≤t+1

p(i,j).

The decision version of the problem 1|sf , rj|Cmax asks whether there is a batch sequence
BS such that the makespan Cmax(BS) ≤ Y .

Clearly, the construction can be done in polynomial time. We show in the sequel that
the instance of the 3-Partition problem has a solution if and only if there is a batch se-
quence BS for the constructed instance of the scheduling problem such that the makespan
Cmax(BS) ≤ Y .

Set r(j) = 3(j − 1)X + 3
2
j(j − 1)Z + 1

2
j(j − 1)B, 1 ≤ j ≤ t + 1. Then r(i,j) = r(j), i.e.,

r(i,j) is independent of i. We will call J(i,j) the j-th job of family Fi.

If the 3-Partition problem has a solution, we can re-lable the indices of a1, a2, ..., a3t

such that
a3i−2 + a3i−1 + a3i = B, for 1 ≤ i ≤ t.

We construct a batch sequence BS of our scheduling problem as follows.

Each family Ff , 1 ≤ f ≤ 3t is divided into two batches Bf and Af such that

Bf = {J(f,j) : 1 ≤ j ≤ d1
3
fe}

and

Af = {J(f,j) : d1
3
fe < j ≤ t + 1}.

The batches are processed according to the following order under BS:

B1,B2,B3, ...,B3i−2,B3i−1,B3i, ...,B3t−2,B3t−1,B3t,A1,A2,A3, ...,A3t−2,A3t−1,A3t.

The jobs in each batch are sequenced in any order under BS.

It is not hard to verify that, under the above schedule π, Cmax(π) = Y . Hence, our
scheduling problem has the required batch sequence.

Now suppose that our scheduling problem has the required batch sequence. We need
to show that the 3-Partition problem has a solution. By Lemma 2.1, we have the following
claim.

Claim 1 There is a required batch sequence BS = (B1, B2, ..., Bb) for the scheduling
problem such that

(1) for every two jobs J(f,i) and J(f,j) of any family Ff with i < j, either J(f,i) and
J(f,j) are included in the same batch, or J(f,i) is included in a batch with an index smaller
than that of the batch containing J(f,j), i.e., C(f,i)(BS) ≤ C(f,j)(BS);

(2) the job indices in each batch are consecutive, i.e., if B is a batch of family Ff

under BS, then for every two jobs J(f,i), J(f,j) ∈ B with i < j, {J(f,k) : i ≤ k ≤ j} ⊆ B.

5

Let BS = (B1, B2, ..., Bb) be the required batch sequence of the scheduling problem
that satisfies the properties in Claim 1. We need more properties of BS.

Let mj = |{Bx : rBx ≥ r(j), 1 ≤ x ≤ b}|, 1 ≤ j ≤ t + 1.

Claim 2 mj ≤ 3(2t− j) + 3, 1 ≤ j ≤ t + 1.

Suppose to the contrary that mj ≥ 3(2t− j) + 4 for some j with 1 ≤ j ≤ t + 1. Since
the earliest starting time of the mj batches in {Bx : rBx ≥ r(j), 1 ≤ x ≤ b} is at least
r(j) ≥ 3(j − 1)X and each batch has a setup time X, the makespan is estimated as

Cmax(BS) > r(j) + mjX ≥ 3(j − 1)X + 3(2t− j)X + 4X = 6tX + X > Y.

This contradicts our assumption.

By Claim 2, we have

Claim 3 b ≤ 6t.

Let N =
∑

x: rBx≥r(t+1) |Bx|.
Claim 4 N ≤ 3

2
t(t + 1).

Otherwise, the 3t batches with release date r(t+1) must contain at least 3
2
t(t + 1) + 1

jobs. Then

Cmax > r(t+1) + 3tX +
3

2
t(t + 1)Z + Z > 6tX + 3t(t + 1)Z + Z > Y,

a contradiction.

Suppose that Af is the batch of family Ff under BS such that the job J(f,t+1) ∈ Af ,
1 ≤ f ≤ 3t. Furthermore, we re-lable the indices of F1, ...,F3t such that

|A1| ≥ |A2| ≥ ... ≥ |A3t|.
Let

Bf = Ff \ Af

and bf = |Bf | ≤ t, for 1 ≤ f ≤ 3t. Then, by Claim 1(2),

Bf = {J(f,1), J(f,2), ..., J(f,bf)}, for 1 ≤ f ≤ 3t.

Claim 5 b3k ≤ k, for 1 ≤ k ≤ t.

Otherwise, let h be the maximum index such that b3h ≥ h + 1. Since b3h ≤ t, by the
maximality of h, mh+1 ≥ 3t + (3t− 3h + 1) = 3(2t− h) + 1, a contradiction to Claim 2.

Claim 6 b3k−2 = b3k−1 = b3k = k, for 1 ≤ k ≤ t.

From Claim 4, we have

∑

1≤k≤3t

bk = 3t(t + 1)−N ≥ 3

2
t(t + 1).

6

By Claim 5, we also have b3k−2, b3k−1, b3k ≤ k, and thus

∑

1≤k≤3t

bk ≤ 3

2
t(t + 1).

This just implies that b3k−2 = b3k−1 = b3k = k for 1 ≤ k ≤ t. The proof of Claim 6 is
completed.

It is implied in Claim 6 that each family Fi, 1 ≤ i ≤ 3t, is divided into at least two
batches under BS. If some family is divided into at least three batches, then there are
at least 6t + 1 batches (under BS), contradicting Claim 3. Hence, we conclude that each
family Fi is divided exactly into two batches Bi and Ai under BS.

Furthermore, from Claim 1(2) and Claim 6, we have

Bi = {J(i,j) : 1 ≤ j ≤ d i

3
e}, for 1 ≤ i ≤ 3t,

and

Ai = {J(i,j) : d i

3
e+ 1 ≤ j ≤ t + 1}, for 1 ≤ i ≤ 3t.

Now, for 1 ≤ k ≤ t, write αk = a3k−2 + a3k−1 + a3k. Then
∑t

k=1 αk = tB. We notice
the following facts:

(1) The common release date of B3k−2, B3k−1 and B3k is

r(k) = 3(k − 1)X +
3

2
k(k − 1)Z +

1

2
k(k − 1)B.

(2)The common release date of Ai, 1 ≤ i ≤ 3t, is r(t+1) > r(k), 1 ≤ k ≤ t.

(3) |B3k−2| = |B3k−1| = |B3k| = k, for 1 ≤ k ≤ t; and |A3k−2| = |A3k−1| = |A3k| =
t + 1− k.

For each k with 2 ≤ k ≤ t + 1, we consider the batches

B3k−2,B3k−1, ...,B3t,A1,A2, ...,A3t,

where, when k = t + 1, the considered batches are A1,A2, ...,A3t. Since the minimum
release date of these batches is r(k), the makespan Cmax(BS) is greater than or equal to the
value obtained by summing up r(k), the setup times of these batches and the processing
times of the jobs in these batches. Now,

r(k) = 3(k − 1)X +
3

2
k(k − 1)Z +

1

2
k(k − 1)B,

the sum of the setup times of these batches is 3(2t−k+1)X, and the sum of the processing
times of the jobs in these batches is

3t(t + 1)Z + t(t + 1)B − 3

2
k(k − 1)Z − ∑

1≤i≤k−1

iαi.

7

Hence,

Cmax(BS) ≥ 6Xt + 3t(t + 1)Z + t(t + 1)B +
∑

1≤i≤k−1

iB − ∑

1≤i≤k−1

iαi.

By the assumption Cmax(BS) ≤ Y = 6Xt + 3t(t + 1)Z + t(t + 1)B, we deduce that

∑

1≤i≤k−1

iαi ≥
∑

1≤i≤k−1

iB, 2 ≤ k ≤ t + 1,

or equivalently, we have the following t inequalities (Ik), 1 ≤ k ≤ t:

(Ik) :
∑

1≤i≤k

iαi ≥
∑

1≤i≤k

iB, 1 ≤ k ≤ t.

Set λk = 1
k
− 1

k+1
= 1

k(k+1)
for 1 ≤ k ≤ t− 1, and set λt = 1

t
. Because each λk is positive,

the linear combination of the above t inequalities (Ik), 1 ≤ r ≤ t, yields the following
inequality (∗).

(∗) :
t∑

k=1

λk

k∑

i=1

iαi ≥
t∑

k=1

λk

k∑

i=1

iB.

One can easily verify that the left hand side of the inequality (∗) is
∑t

k=1 αk, and the right
hand side of the inequality (∗) is tB. By the fact that

∑t
k=1 αk = tB, we deduce that

equality always holds for the inequality (∗). Since the inequality (∗) is a positive linear
combination of the t inequalities Ik, 1 ≤ k ≤ t, we deduce that equality always holds for
each of the t inequalities (Ir), 1 ≤ r ≤ t, i.e.,

∑

1≤i≤k

iαi =
∑

1≤i≤k

iB, 1 ≤ k ≤ t.

From these equalities, we can trivially deduce that

αk = B, for 1 ≤ k ≤ t.

Hence, the 3-Partition problem has a solution. The result follows. 2

The problem 1|sf = s, rj|Cmax and 1|sf = s, rj, pj = 1|Cmax have the same complexity
status in a unary sense. In fact, each job with pj > 1 can be split into pj small jobs, each
with a unit processing time and release date rj. By Lemma 2.1, these small jobs split
from Jj can be included in the same batch in an optimal batch sequence. Thus, the set
of these small jobs will act as Jj. Hence, we have

Theorem 3.3 1|sf = s, rj, pj = 1|Cmax is strongly NP-hard.

Recall the following NP-complete Equal-size 2-Partition problem [4].

Equal-size 2-Partition Given a set of 2t positive integers a1, a2,, a2t such that∑2t
i=1 ai = 2B, is there a partition of the ai’s into 2 groups of t, each summing exactly to

B?

8

By using the NP-complete Equal-size 2-Partition problem for the reduction, we can
further prove the following two results.

Theorem 3.4 The problem 1|sf = s, rj|Cmax is NP-hard even when the jobs have
at most 3 distinct release dates.

Proof Similar to the proof of Theorem 3.2. 2

Theorem 3.5 The problem 1|sf , rj|Cmax is NP-hard even when the jobs have at
most 2 distinct release dates.

Proof For a given instance of the Equal-size 2-Partition problem with a1, a2, ..., a2t,
where

∑2t
i=1 ai = 2B, we construct an instance of the decision version of the problem

1|sf , rj|Cmax with two distinct release dates as follows.

• 4t jobs: J(i,j), 1 ≤ i ≤ 2t, 1 ≤ j ≤ 2;

• 2t families F1,F2, ...F2t, where

Fi = {J(i,j) : 1 ≤ j ≤ 2}, 1 ≤ i ≤ 2t;

• Processing times of the jobs are defined as

p(i,j) = Z + ai, 1 ≤ i ≤ 2t, 1 ≤ j ≤ 2, where Z = 3tB;

• Setup times of the families are defined as

si = X + ai, 1 ≤ i ≤ 2t, where X = 4tZ;

• Release dates of the jobs are defined as

r(i,1) = 0 and r(i,2) = tX + tZ + 2B, 1 ≤ i ≤ 2t;

• Threshold value of the makespan is defined as

Y = 3tX + 4tZ + 7B.

The decision version of the problem 1|sf , rj|Cmax asks whether there is a batch sequence
BS such that the makespan Cmax(BS) ≤ Y .

The construction is done in polynomial time. Let BS = (B1, B2, ..., Bb) be a batch
sequence for the scheduling instance such that Cmax(BS) is minimum. We will lose nothing
by re-sequencing the batches by the earliest release date first (ERD) rule. Hence, we can
suppose that rB1 ≤ rB2 ≤ ... ≤ rBb

. Let k be the maximum index such that rBk
= 0 (in

case that rB1 > 0, we set k = 0). Then

b = 2t + k and |B1| = |B2| = ... = |Bk| = 1.

Suppose that the jobs in B1∪B2∪...∪Bk are J(i1,1), J(i2,1), ..., J(ik,1), and set D =
∑

1≤e≤k aie .
Then, the makespan Cmax(BS) can be calculated by

max{tX + tZ + 2B, kX + kZ + 2D}+ 2tX + (4t− k)Z + 6B −D.

9

From this we can deduce that Cmax(BS) ≤ Y if and only if k = t and D = B. Con-
sequently, the instance of the Equal-size 2-Partition problem has a solution if and only
if there is a batch sequence BS for the scheduling instance such that the makespan
Cmax(BS) ≤ Y . Hence, 1|sf , rj|Cmax with at most two distinct release dates is NP-hard.

2

4 Algorithms

Consider the problem 1|sf , rj|Cmax. By Lemma 2.1, we can combine the jobs with the
same release date in the same family into a big job. This procedure requires only O(n)
time. Hence, we can suppose that any two jobs in the same family have different release
dates.

Let n be the number of jobs, m the number of families, k the number of distinct release
dates, and P the sum of the setup times of all the families and the processing times of all

the jobs. The algorithms presented in this section include an O
(
n

(
n
m

+ 1
)m)

time dy-

namic programming algorithm, an O(mkkP 2k−1) time dynamic programming algorithm,
a heuristic with a performance ratio 2, and a polynomial time approximation scheme.

4.1 A general dynamic programming algorithm

Suppose that we have m families F1,F2, ...,Fm, and each family has the form

Fi = {J(i,1), J(i,2), ..., J(i,ni)}, 1 ≤ i ≤ m.

Suppose further that the jobs are numbered such that

r(i,1) < r(i,2) < ... < r(i,ni), 1 ≤ i ≤ m.

For a nonnegative integer x, write

F (x)
i = {J(i,j) : 1 ≤ j ≤ x}, 1 ≤ i ≤ m.

When x = 0, these sets are empty, and so no setup is needed.

For m integers x1, x2, ..., xm with 0 ≤ xi ≤ ni, let R(x1, x2, ..., xm) be the minimum
makespan of the problem 1|sf , rj|Cmax restricted to the m subfamilies of jobs

F (x1)
1 ,F (x2)

2 , ...,F (xm)
m .

Consider an optimal batch sequence BS for the problem 1|sf , rj|Cmax restricted to the

families F (x1)
1 ,F (x2)

2 , ...,F (xm)
m such that BS satisfies the property described in Lemma 2.1.

10

If the last batch Bb in BS is a subset of Fi and the maximum release date of the jobs in
Bb is rBb

∈ {r(i,j) : 1 ≤ j ≤ xi}, then we have

R(x1, x2, ..., xm)

= max{rBb
, R(x1, ..., xi−1, xi − |Bb|, xi+1, ..., xm)}+ si + PBb

,

where rBb
= r(i,xi) and PBb

is the sum of the processing times of the jobs in Bb. Hence,
our dynamic programming recursion can be given by

R(x1, x2, ..., xm) =

min
1≤i≤m,0≤yi≤xi−1

max{r(i,xi), R(x1, ..., xi−1, yi, xi+1, ..., xm)}+ si + P (i)(xi)− P (i)(yi),

where, for any integer y with 1 ≤ y ≤ ni,

P (i)(y) =
∑

1≤j≤y

p(i,j).

The initial condition is given by

R(0, 0, ..., 0) = 0.

The dynamic programming function has at most

(n1 + 1)(n2 + 1)...(nm + 1) ≤
(

n

m
+ 1

)m

states. The computation of P (i)(y), for all i and y with 1 ≤ i ≤ m and 1 ≤ y ≤ ni, can
be taken before the dynamic programming recursion, which needs only O(n) time, since

P (i)(y + 1) = P (i)(y) + p(i,y).

Each recursion runs only O(n) time, since we have at most O(n) choices for (i, yi) with
1 ≤ i ≤ m and 1 ≤ yi ≤ ni. Hence, the overall complexity of the above dynamic

programming recursion is O
(
n

(
n
m

+ 1
)m)

.

One interesting corollary of the above discussion is that, when m = 1, the problem be-
comes the serial batching scheduling problem to minimize makespan, i.e., 1|s-batch, rj|Cmax,
which can be solved in O(n2) time [1, 7].

4.2 A pseudopolynomial dynamic programming formulation un-
der fixed number of release dates

Let there be k distinct release dates: R1, R2, . . . , Rk, satisfying R1 < R2 < · · · < Rk.
Then, the interval [R1, +∞) is divided into k segments [R1, R2), [R2, R3), . . . , [Rk, Rk+1),
where Rk+1 = +∞.

11

Let g(a1, . . . , ak) denote the minimum makespan of the schedule for the n jobs, subject
to the constraint that the first batch starting in [Ri, Ri+1) (if it exists) starts at time ai

(i = 1, 2, . . . , k). Clearly, we may require a1 = R1 and Ri ≤ ai < min{Ri+1, Ri + P}
(2 ≤ i ≤ k), where P =

∑m
f=1 sf +

∑n
j=1 pj. Then, (a1, . . . , ak) has at most O(P k−1)

configurations.

Now assume that some (a1, . . . , ak) is given. To compute g(a1, . . . , ak), we further
introduce h(j; l1, . . . , lk) (0 ≤ j ≤ m) as the minimum makespan to schedule the jobs of
families F1,F2, . . . ,Fj, subject to the constraints that, for i = 1, 2, . . . , k,

(i) the first batch starting in [Ri, Ri+1) (if it exists) starts at ai;

(ii) the total setup and processing times of the batches starting in [Ri, Ri+1) is li.

Then, g(a1, . . . , ak) = min(l1,...,lk) h(m; l1, . . . , lk), where (l1, . . . , lk) satisfies

(i) 0 ≤ li ≤ P (1 ≤ i ≤ k);

(ii) ai + li ≤ ai+u if li+1 = li+2 = · · · = li+u−1 = 0 and li+u 6= 0 (1 ≤ i ≤ k − 1,
1 ≤ u ≤ k − i).

h(m; l1, . . . , lk) can be computed recursively. Initially, we define h(0; 0, . . . , 0) = ak and
for other cases, h(0; l1, . . . , lk) = +∞. Then, for j = 1, 2, . . . , m,

h(j; l1, . . . , lk) = min
(δ1,...,δk)

{h(j − 1; l1 − δ1, . . . , lk − δk) + δk},

where δi (i = 1, 2, . . . , k) is the setup and processing requirement of the batch of Fj

starting in [Ri, Ri+1) and satisfies 0 ≤ li − δi ≤ Ri+1 − ai if δi 6= 0. Let ∆i = li − δi,
1 ≤ i ≤ k. Then, for j = 1, 2, . . . , m,

h(j; l1, . . . , lk) = min
(∆1,...,∆k)

{h(j − 1; ∆1, . . . , ∆k) + lk −∆k},

and ∆i (i = 1, 2, . . . , k) satisfies 0 ≤ ∆i ≤ Ri+1 − ai if ∆i 6= li. Since there are at most
O(nk

j) ≤ O(kk) ways to partition the jobs of Fj into k sets, (δ1, . . . , δk) has at most O(kk)
configurations, and so (∆1, . . . , ∆k) has at most O(kk) configurations. Therefore, each
recursion requires O(kk) time. The size of the domain of h(j; l1, . . . , lk) is O(mP k). Thus,
g(a1, . . . , ak) is obtained in O(mkkP k) time. The globally optimal schedule is obtained
by considering all the configurations of (a1, . . . , ak), which requires O(mkkP 2k−1) time.
Clearly, this algorithm is pseudopolynomial when k is fixed.

4.3 A heuristic

Consider the following heuristic for the problem 1|sf , rj|Cmax.

12

Algorithm 4.3.1 Family Batching Rule: Each family acts as a batch.

First, we renumber the families F1, ...,Fm such that

rF1 ≤ rF2 ≤ ... ≤ rFm .

Then, set BS = (F1, ...,Fm).

Theorem 4.3.2 The Family Batching Rule is a 2-approximation algorithm for the
problem 1|sf , rj|Cmax.

Proof Let Copt
max be the minimum makespan for the problem 1|sf , rj|Cmax. Two

obvious lower bounds for Copt
max are

Copt
max ≥ max{rj : 1 ≤ j ≤ n} = max{rFi

: 1 ≤ i ≤ m}

and
Copt

max ≥
∑

1≤i≤m

si +
∑

1≤j≤n

pj.

Furthermore, an obvious upper bound for Cmax(BS) is

Cmax(BS) ≤ max{rj : 1 ≤ j ≤ n}+
∑

1≤i≤m

si +
∑

1≤j≤n

pj,

where BS is the batch sequence obtained by the Family Batching Rule (Algorithm 4.3.1).
It follows that

Cmax(BS) ≤ 2Copt
max.

2

The performance ratio of 2 for the Family Batching Rule cannot be further refined.
To see this, let ε > 0 be any small positive number. We will construct an instance I of
the problem 1|sf , rj|Cmax such that the batch sequence obtained by the Family Batching
Rule on I is not a (2− ε)-approximation solution.

We have m families F1, ...,Fm, where m ≥ 3
ε
. Each family Fi has two jobs, i.e.,

Fi = {J(i,1), J(i,2)}.

The processing times of the jobs are defined as

p(i,1) = m and p(i,2) = 1, 1 ≤ i ≤ m.

The release dates of the jobs are defined as

r(i,1) = 0 and r(i,2) = m2 + m, 1 ≤ i ≤ m.

The setup times of the families are defined as

si = 1, 1 ≤ i ≤ m.

13

One can verify that one of the optimal batch sequences is

({J(1,1)}, {J(2,1)}, ..., {J(m,1)}, {J(1,2)}, {J(2,2)}, ..., {J(m,2)}),

and the minimum makespan is given by Copt
max = m2+3m. But the batch sequence obtained

by the Family Batching Rule is

BS = (F1, ...,Fm),

and the makespan of BS is

Cmax(BS) = 2m2 + 3m > (2− ε)(m2 + 3m) = (2− ε)Copt
max.

4.4 A polynomial time approximation scheme

In this section we will derive a polynomial time approximation scheme for the scheduling
problem. First, we give a lemma that allows us to focus on the special case with a constant
number of distinct release dates.

Lemma 4.4.1 Given a PTAS for the special case with a constant number of distinct
release dates, there exists a PTAS for the general problem.

Proof Let ε > 0 be given. Define rmax = max1≤i≤n ri and δ = εrmax/2. Note that
δ ≤ εCopt

max/2 since rmax ≤ Copt
max, where Copt

max denotes the optimal objective value. Round
each release date ri down to the nearest multiple of δ:

r∗i = δbri/δc (i = 1, 2, . . . , n) .

Clearly, the number of distinct r∗i is no more than 1+rmax/δ = 1+2/ε, which is a constant
number for a given ε. Let C∗

max denote the optimal objective value for the problem with
the scaled release dates r∗i . Consider a (1 + ε/2)-approximation solution to the problem
with the scaled release dates. Add δ to each batch’s start time in the solution. Then we
get a feasible schedule with respect to release dates ri, the Cmax of which is bounded by

(1 + ε/2)C∗
max + δ ≤ (1 + ε)Copt

max ,

where C∗
max ≤ Copt

max is applied. 2

In the following, we present an FPTAS for the special case with a constant number k
of distinct release dates. This is done by applying the well-known rounding technique to
the dynamic programming formulation in Section 4.2.

Given ε > 0, we define ν = εP/(mk + n + 1). Let

r∗i = dri/νe , p∗i = bpi/νc (i = 1, 2, . . . , n)

s∗f = bsf/νc (f = 1, 2, . . . ,m).

14

Suppose that we have found an optimal schedule and its objective value C∗
max for the

problem with the scaled parameters s∗f , r
∗
i and p∗i by the dynamic program in Section 4.2.

Note that the schedule has at most mk batches, and hence contains at most mk setups.
Increase each setup s∗f by sf/ν − s∗f and each processing time p∗i by pi/ν − p∗i , which
increases the objective value by at most mk + n. Now consider 1/ν to be a unit of time.
Then we can get a schedule with respect to sf , ri and pi, and its objective value is given
by

Cmax ≤ νC∗
max + (mk + n)ν .

Also, consider an optimal schedule with respect to sf , ri and pi, the objective value of
which is denoted by Copt

max. Delay the starting of each batch by ν units of time in the
schedule, and consider ν to be a unit of time. We obtain a schedule with the objective
value

C ′
max = 1 + Copt

max/ν .

Obviously, C∗
max ≤ C ′

max holds. Thus,

Cmax ≤ Copt
max + (mk + n + 1)ν = Copt

max + εP ≤ (1 + ε)Copt
max .

The time complexity of the approximation scheme is dominated by the step to solve the
problem with the scaled parameters. Let P ∗ =

∑m
f=1 s∗f +

∑n
i=1 p∗i . Clearly, it holds that

P ∗ ≤
m∑

f=1

sf

ν
+

n∑

i=1

pi

ν
=

P

ν
=

mk + n + 1

ε
.

Thus, the running time of the approximation scheme is bounded by

O
(
mkkP ∗2k−1

)
≤ O


mkk

(
mk + n + 1

ε

)2k−1

 ,

which is polynomial for given k and 1/ε. In other words, the approximation scheme is an
FPTAS.

4.5 A remark on the problem with only two distinct release
dates

Suppose the job system has only two distinct release dates R1 and R2. When the setup
times of the families are the same, i.e., sf = s for every family Ff , we can easily show
that the problem 1|sf , rj|Cmax can be polynomially solved by the following algorithm (the
proof is routine and omitted). Together with Theorem 3.4 and 3.5, this can help to deduce
the complexity status of the problem 1|sf , rj|Cmax.

Algorithm 4.5.1 Batching rule under two distinct release dates.

(1) Renumber the families with two jobs in non-decreasing order of the processing
times of the jobs with release date R1.

15

(2) Each family that contains just one job with release date R1 acts as a batch and is
scheduled first in any order.

(3) At any decision time t with R1 ≤ t < R2, if t + s < R2, pick a family Fi with two
jobs such that

p(i,1) = max{p(f,1) : |Ff | = 2}
(if any) and let {p(i,1)} act as a batch starting at t.

(4) The remaining families or subfamilies, each of which acts as a batch, are scheduled
in an arbitrary order beginning at max{t, R2}, where t is the current decision time.

It is easy to see that the complexity of the algorithm is O(n) + O(m log m). 2

Acknowledgements

This research was supported in part by The Hong Kong Polytechnic University un-
der grant numbers G-S818. The first author was also supported by NSFC(10371112),
NSFHN(0411011200) and SRF for ROCS, SEM. The second author was also supported
by NSFC(10101007).

References

[1] P. Brucker, Scheduling Algorithms, Springer-Verlag, Berlin, 2001.

[2] J. Bruno and P. Downey, Complexity of task sequencing with deadlines, setup times
and changeover costs, SIAM Journal on Computing, 7(1978), 393-404.

[3] T.C.E. Cheng, C.T. Ng and J.J. Yuan, The single machine batching problem with
family setup times to minimize maximum lateness is strongly NP-hard, Journal of
Scheduling, 6(2003), 483-490.

[4] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the theory
of NP-Completeness, Freeman, San Francisco, CA, 1979.

[5] J.B. Ghosh and J.N.D. Gupta, Batch scheduling to minimize maximum lateness,
Operations Research Letters, 21(1997), 77-80.

[6] C.L. Monma and C.N. Potts, On the complexity of scheduling with batch setup
times, Operations Research, 37(1988), 798-804.

[7] C.N. Potts and M.Y. Kovalyov, Scheduling with batching: a review, European Jour-
nal of Operational Research, 120(2000), 228-249.

16

